2nd From Carbon-Rich Molecules to Carbon-Based Materials Conference

The 2nd From Carbon-Rich Molecules to Carbon-Based Materials Conference is to be held 7th – 10th June in Nassau, Bahamas.

This interdisciplinary conference will provide unique “fusion” opportunities for chemists, physicists and engineers having various backgrounds but sharing passion and interests in carbon-only or carbon-rich molecules and carbon-based materials. It will allow a diverse group of scientists from all over the globe to discuss the current challenges, needs and prospects of this quickly-evolving multidisciplinary field.

Dates for your diary

Early Bird- 7th December 2017

Talk Submission- 14th December 2017

Last Chance – 13th April 2018

You can click here to register now and see here for further information about the conference.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Janus Particle Chains that Can Rotate, Dissipate and Recombine

Janus is a god in ancient Roman mythology with two opposing faces. Its name has been brought to materials science to label particles with two or more distinct faces as “Janus particles”. Integrating multiple functions into one physical entity, Janus particles with various properties are extensively adopted as catalysts, electronic components and other applications.

Reporting in Chemical Communications, Bart Jan Ravoo and co-workers from Westfälische Wilhelms-Universität Münster in Germany developed a Janus particle colloidal assembly using a sandwich micro-contact printing method, a strategy reported previously by the same group. The Janus particle assembly consists of Janus particle chains, with the structure of one chain illustrated in Figure 1b. The authors first capped a batch of silica micro-beads with tri-block co-polymers on opposing ends (green parts shown in Figure 1). These copolymers serve as arms that extend and attach to functionalized magnetite (Fe3O4) nanoparticles. Two Janus particles will become magnetically glued together if they connect to the same nanoparticle at the two caps. This connection propagates and eventually forms Janus particle chains mainly consisting of two to four particles.

Figure 1. The schematic illustration depicting the structure of a Janus particle chain.

The artificial chains are responsive to an external magnetic field and photons with different wavelengths. Owing to the magnetic nanoparticles, the chains tend to arrange themselves according to the direction of the applied magnetic field. As shown in Figure 2a, the authors successfully rotated a chain by moving around a magnet.

Moreover, radiating the chains using UV light and green visible light will alter the chain configuration. The light sensitivity is rooted in a light-induced isomerization reaction of the co-polymer linkers: green light yields adhesive trans-isomers, whereas UV light produces cis-isomers that detach from magnetite. Hence, dissipation of the chains into individual Janus particles and then rejoining the particles together can be readily accomplished (Figure 2b).

Figure 2. Optical microscopy images showing (a) the magnetic and (b) the photo-switching properties of one Janus particle chain. All scale bars are 10 µm.

The demonstrated assembly is just the tip of the iceberg for Janus particle assemblies. As claimed by the authors, any acrylate in principal can be used to build the co-polymer linkers, resulting in colloidal assemblies with versatile features.

To find out more please read:

Self-assembly of Colloidal Molecules that Respond to Light and a Magnetic Field

Sven Sagebiel, Lucas Stricker, Sabrina Engel and Bart Jan Ravoo

DOI: 10.1039/c7cc04594h

About the blogger:

Tianyu Liu is a Ph.D. in chemistry graduated from University of California-Santa Cruz. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web writer for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Fluorescent test strip detects deadly phosgene gas

Chinese scientists have improved the sensitivity of test strips for phosgene gas by using a different fluorophore.

Phosgene gas reacts with lung proteins, disrupting the blood–air barrier and suffocating victims. Although deadly, many chemical plants require phosgene to synthesise products such as pharmaceuticals and pesticides. But accidental leaks are a risk. In 2016, for example, a leak at Gujarat Narmada Valley Fertilizers and Chemicals in India killed four workers and affected nine others.

Source: Royal Society of Chemistry
This is the first test-strip sensing system for gaseous phosgene made with AIE-based fluorophores

 

Read the full story by Sarah Piggott on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Automated synthesis yields sugar high

An automated synthetic method designed by chemists in Germany has assembled the longest synthetic oligosaccharide ever made from monosaccharides. The method could help to up the pace of carbohydrate research by improving researchers’ access to synthetic glycans.

Source: © Royal Society of Chemistry The researchers used automated glycan assembly to make a 50mer polymannoside

Read the full article by Jennifer Newton on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Elucidating the Stability of Two Metal-Organic Frameworks toward Carbon Dioxide Sorption: A Comparative Study

Metal-organic frameworks (MOFs) are coordination networks consisting of organic ligands and metal cores. They possess crystalline structures with metal complexes as the basic building blocks. These complexes assemble together and extend periodically to form the MOF structures. MOFs represent a family of highly porous materials with ultrahigh surface area (typically >1000 m2 g-1). Other attractive characteristics for MOFs are abundant active metal cores and unique porous structures with tunable pore width, useful for gas storage applications.

Capturing carbon dioxide has evolved into an intriguing research area, mainly due to environmental concerns triggered by high levels of greenhouse gas emissions. Some MOFs have already been explored as carbon dioxide storage materials and exhibited storage capability exceeding that of conventional absorbents (e.g. amines). Aside from the absorption capacity of carbon dioxide, the performance stability over prolonged operation periods is another figure of merit for MOF-based absorbents. However, there are limited studies in this area. Now for the first time, research groups led by Zeng and Zhao from National University of Singapore compared the performance stability of two representative MOFs, HKUST-1 and UiO-66(Zr). The unit cell of the two MOFs are shown in the inset of Figure a.

The two aforementioned MOFs were subjected to 500 carbon dioxide absorbing and desorbing cycles (Figure a). The carbon dioxide uptake amount of the two MOFs was gauged at specific cycle numbers (Figure b). Whilst HKUST-1 displayed a consistent decreasing storage capacity with increasing cycle number, the capacity of UiO-66(Zr) fluctuated but remained relatively constant. The results clearly indicate that HKUST-1 is more vulnerable and instable than UiO-66(Zr) during long-term working cycles.

The authors then investigated the mechanisms associated with the different stability performances. They first observed that the surface area of HKUST-1 decreased 24% to 1270 m2 g-1 after the stability test, whereas that of UiO-66(Zr) remained relatively intact. Moisture-induced structural collapse was excluded as a possible reason by carrying out a control experiment with ultra-pure and dry hydrogen gas. The authors then exploited multi-frequency atomic force microscopy and concluded that the difference in elastic modulus of the two MOF crystals played an important role in determining the corresponding MOF durability. UiO-66(Zr) has an elastic modulus (ca. 28 GPa) much higher than that of HKUST-1 (ca. 19 GPa), meaning that the former is more elastic than the latter. The high elasticity of UiO-66(Zr) can efficiently buffer the volumetric deformation caused by carbon dioxide absorption and desorption, preventing UiO-66(Zr) crystals from structural failure.

Figure. (a) Illustration of one cycle of the carbon dioxide absorption-desorption test. The inset shows where one carbon dioxide molecule resides in the corresponding MOFs. (b) The evolution of carbon dioxide uptake capacity (blue) and surface area (black) of HKUST-1 and UiO-66(Zr).

This work is expected to provide general guidelines on studying the structural stability of other MOFs with applications associated with gas storage and separation.

 

To find out more please read:

Structure Failure Resistance of Metal-organic Frameworks toward Multiple-cycle CO2 Sorption

Zhigang Hu, Yao Sun, Kaiyang Zeng, and Dan Zhao

DOI: 10.1039/c7cc04313a

About the author:

Tianyu Liu is a Ph.D. in chemistry graduated from University of California-Santa Cruz. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web writer for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for July

All of the referee-recommended articles below are free to access until 10th September 2017.

Lewis acid catalyzed diastereoselective [3+4]-annulation of donor–acceptor cyclopropanes with anthranils: synthesis of tetrahydro-1-benzazepine derivatives
Zhe-Hao Wang, Huan-Huan Zhang, Dao-Ming Wang, Peng-Fei Xua and Yong-Chun Luo
Chem. Commun., 2017, 53, 8521-8524
DOI: 10.1039/C7CC04239F, Communication

____________________________________________________

A Non-Enzyme Cascade Amplification Strategy for Colorimetric Assay of Disease Biomarkers
Jiuxing Li, Zhuangqiang Gao, Haihang Ye, Shulin Wan, Meghan Pierce, Dianping Tangb and Xiaohu Xia
Chem. Commun., 2017,53, 9055-9058
DOI: 10.1039/C7CC04521B, Communication

____________________________________________________

Radiofluorination of a NHC-PF5 adduct: Toward new probes for 18F PET imaging
Boris Vabre, Kantapat Chansaenpak, Mengzhe Wang, Hui Wang, Zibo Li and François P. Gabbai
Chem. Commun., 2017,53, 8657-8659
DOI:  10.1039/C7CC04402J, Communication

____________________________________________________

New mechanistic insights into intramolecular aromatic ligand hydroxylation and benzyl alcohol oxidation initiated by the well-defined (μ-peroxo)diiron(III) complex
Mio Sekino, Hideki Furutachi, Rina Tojo, Ayumi Hishi, Hanako Kajikawa, Takatoshi Suzuki, Kaito Suzuki, Shuhei Fujinami, Shigehisa Akine, Yoko Sakata, Takehiro Ohta, Shinya Hayamic and Masatatsu Suzukid
Chem. Commun., 2017,53, 8838-8841
DOI: 10.1039/C7CC04382A, Communication

____________________________________________________

Activation of P-H Bond by a Frustrated Lewis Pair and its Application in Catalytic Z-selective Hydrophosphonylation of Terminal Ynones
Yizhen Liu, Xiaoting Fan, Zhen Hua Li and Huadong Wang
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC05028C, Communication

____________________________________________________

Lone pair-π interaction-induced generation of photochromic coordination networks with photoswitchable conductance
Jian-Zhen Liao, Jian-Fei Chang, Lingyi Meng, Hai-Long Zhang, Sa-Sa Wanga and Can-Zhong Lu
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC05150F, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dissolving and Stabilizing the Precursor of Graphene in Organic Solvents

Graphene, a two-dimensional single-layer graphite sheet, has aroused worldwide attention since the last decade. Its ultrahigh electrical and thermal conductivities, high mechanical stiffness and unique band structure have attracted extensive research efforts to develop graphene-based electronics, photonics, printing materials etc. Currently, among various strategies, the wet-chemical method still remains the most practical protocol for large-scale production of graphene in laboratories. This process in general involves two steps: the oxidative exfoliation of graphite, a.k.a. Hummers’ method, followed by reduction of the oxidized graphite sheets. Graphite oxide (GO), possessing a layered structure analogous to graphite but with rich oxygen functionalities (such as hydroxyl and carboxyl groups) anchored on each layer, is the product of the first step and thus serves as a precursor of graphene.

As the aforementioned wet chemical method is usually carried out in water, GO is primarily stored as aqueous-based colloidal dispersions. However, GO is reported to be chemically unstable in water since water molecules can react with electropositive carbons of GO. Though the reaction is not rapid, it partially removes the oxygen functionalities and breaks the carbon matrix, which eventually forces GO to precipitate and reduces the shelf life of the GO precursor.

Recently, Shi and coworkers from Tsinghua University have successfully prolonged the lifetime of GO by dispersing it in organic solvents. During the last purification step of the Hummers’ method, instead of using de-ionized water, anhydrous ethanol was utilized to rinse the GO product and obtain ethanol-wetted GO. X-ray diffraction revealed that ethanol molecules existed in the inter-layer space between adjacent layers. The ethanol-wetted GO could be readily dissolved in propylene carbonate, an organic solvent, for concentrations ranging from 0.1 mg mL-1 to 40 mg mL-1 (Figures a and b). More importantly, GO could be stored in propylene carbonate for at least a month without a colour change, whilst the colour of aqueous GO dispersion discernibly darkened (Figure c). Spectroscopic studies indicated that the colour change was attributed to the loss of oxygen functionalities. The results unambiguously prove that GO in propylene carbonate is much more stable than GO in water.

Figure. (a) Dissolution of ethanol-wetted GO in propylene carbonate. (b) GO colloidal dispersions with various concentrations. (c) Color evolution of GO dispersions (1 mg mL-1) with water and propylene carbonate as solvents before and after storing for 28 days under ambient conditions.

Aside from propylene carbonate, dimethyl sulfoxide, ethylene glycol and N,N-dimethylformamide are solvents that can dissolve the ethanol-wetted GO. The successful stabilization of GO colloidal dispersions could ensure the steady production of graphene in laboratories, as well as reveal new opportunities to develop GO-based devices.

To find out more please read:

Organic Dispersions of Graphene Oxide with Arbitrary Concentrations and Improved Chemical Stability

Wencheng Du, Mingmao Wu, Miao Zhang, Guochuang Xu, Tiantian Gao, Liu Qian, Xiaowen Yu, Fengyao Chi, Chun Li and Gaoquan Shi

DOI: 10.1039/c7cc04584k

About the author:

Tianyu Liu is a Ph.D. in chemistry graduated from University of California-Santa Cruz. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web blog writer for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A warm welcome to Sandeep Verma, our new ChemComm Associate Editor

We are excited to welcome new Associate Editor Sandeep Verma (Indian Institute of Technology Kanpur) to the ChemComm Editorial Board

Professor Sandeep Verma

Sandeep Verma holds the positions of Professor of Chemistry and Shri Deva Raj Endowed Chair Professor at the Department of Chemistry, Indian Institute of Technology Kanpur, which he joined in 1997. His work has been recognized by numerous awards such as Swarnajayanti Fellowship (2005), Shanti Swarup Bhatnagar Prize in Chemical Sciences (2010), Department of Atomic Energy-Science Research Council Outstanding Investigator Award (2012), Ranbaxy Research Award in Pharmaceutical Sciences (2013), J C Bose National Fellowship (2013), Silver Medal, Chemical Research Society of India (2017), and National Prize for Research on Interfaces between Chemistry and Biology (2017).

His main research interests include peptide/protein assemblies for disease modeling, soft biomaterials, bioimaging, and surface chemistry of metal complexes. In particular, his group focuses on heterogeneous catalysts designed by developing polymeric templates based on nucleobase frameworks for application to interesting chemical and biochemical reactions. His work also focuses on the construction of architectures mimicking biological assemblies and metal-organic frameworks.

As a ChemComm, Sandeep will be handling submissions to the journal in the above areas. Why not submit your next paper to his Editorial Office?

Read Professor Verma’s recent articles published in ChemComm and its sister journals:

Chemical sensing in two dimensional porous covalent organic nanosheets
Gobinda Das, Bishnu P. Biswal, Sharath Kandambeth, V. Venkatesh, Gagandeep Kaur, Matthew Addicoat, Thomas Heine, Sandeep Verma and Rahul Banerjee
Chem. Sci., 2015, 6, 3931-3939

Organostannoxane-supported nucleobase arrays: synthesis and supramolecular structures of polymeric and molecular organotin complexes containing guanine, uracil and 2-aminopurine
Subrata Kundu, N. Nagapradeep, Balaram Mohapatra, Sourav Biswas, Sandeep Verma and Vadapalli Chandrasekharn
CrystEngComm, 2016, 18, 4807-4817

Assembly, postsynthetic modification and hepatocyte targeting by multiantennary, galactosylated soft structures
Anisha Thomas, Akansha Shukla, Sri Sivakumarb and Sandeep Verma
Chem. Commun., 2014, 50, 15752-15755

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Releasing A Pungent Anti-cancer Reagent with A Trisulfide Linker Inspired by Garlic

People who love the taste of garlic are often annoyed by its lingering smell. While there are various tips to get rid of this unpleasant odor, have you ever thought that this garlic aroma brings you chemical compounds that are potent anti-cancer reagents?

Diallyl trisulfide, one of the natural occurring components rendering the flavor of garlic, is able to release hydrogen sulfide (H2S) upon contacting with thiol compounds (i.e., organic molecules with –SH functional groups). H2S is a pungent gas that one might never forget after sniffing a rotten egg. However, this “notorious” gas, when at low concentrations, is reported to be friendly to our bodies. It relaxes vascular smooth muscle, reduces blood pressure, lowers risk associated with cancer as well as protects gastrointestinal, nervous and immune systems. All the aforementioned benefits of H2S have aroused worldwide efforts in developing H2S-releasing and bio-compatible materials that mimic the natural products for pharmaceutical applications.

Davis, Quinn and co-workers from Monash University, Australia and University of Warwick, United Kingdom, recently published a paper in Chemical Communications that reports a trisulfide-linked organic polymer capable of releasing H2S when meets –SH groups. As shown in the scheme below, the synthesized polymer is composed of three parts: a polyethylene glycol (PEG) unit on the left (in blue), a cholesterol (CHOL) group on the right (in orange), and a linker (in black) joining the two ends. PEG and CHOL are chosen mainly due to their bio-compatibility. By changing the structure of the middle linker, the authors obtained three types of polymers that behave differently when mixing with thiol compounds. The trisulfide linker (denoted as T) enables release of H2S gas and initiates polymer degradation. The disulfide linker (denoted as D) allows polymer degradation only. The amide linker (denoted as C) containing no sulfide atoms is inert to the thiol exposure.

Scheme. The chemical structure of the synthesized polymers with different linkers.

Experiments showed that the T-linked polymers are capable of releasing H2S both in vitro and in vivo.

A fluorescent probe, which can be reduced by H2S and becomes fluorescent, is applied to detect the existence of H2S. As shown in Figure a, the trisulfide linked polymers tested in vitro exhibited the highest fluorescence when mixing with L-cysteine (a thiol compound to trigger H2S generation). For the in vivo measurements, the authors incubated HEK293 cells with the polymers and the probe. Similar as the in vitro results, the fluorescence intensity of the cells containing the T-linked polymers is the highest (Figure b). Both the in vitro and in vivo results unambiguously proved that the presence of the T-linker was responsible for generating H2S. Additionally, another set of tests using Nile Red confirmed the biodegradability of the T-linked polymers.

Figure. (a) Fluorescence spectra collected from different systems in vitro. The inset shows the chemical reaction between the probe (SF4) and H2S that displays fluorescence. (b) Fluorescence intensity of different polymers over time in HEK293 cells.

The developed tri-sulfide linker may allow the mimicry of endogenous biosynthesis, the initiation of discrete signaling events and the synthesis of next-generation pharmaceutical excipients.

 

To find out more please read:

Garlic-inspired Trisulfide Linkers for Thiol-stimulated H2S Release
Francesca Ercole, Michael R. Whittaker, Michelle L. Halls, Ben J. Boyd, Thomas P. Davis and John F. Quinn
DOI: 10.1039/c7cc03820h

About the author:

Tianyu Liu is a Ph.D. in chemistry graduated from University of California-Santa Cruz. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web writer for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Simplified structure eases antibiotic synthesis

New analogues of the potent antibiotic teixobactin could be instrumental in the fight against multi-drug resistant pathogens.

By replacing a rare amino acid in the structure of teixobactin, UK researchers have unlocked the door to cheaper and easier-to-manufacture forms of this potent antibiotic.

(Left) Teixobactin. (Right) General structure of teixobactin analogues with the hydrophilic/charged residues shown in red, hydrophobic residues shown in black and structural differences shown in blue.

Scientists in the US reported their discovery of teixobactin in 2015. It works against multi-drug resistant pathogens, but as it contains a rare and difficult to manufacture amino acid it is hard to make.

Read the full story by Tabitha Watson on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)