Author Archive

What Does the New Carbon Allotrope Look Like, Theoretically?

A long-lasting dispute regarding the most stable structure of cyclo[18]carbon, a new carbon allotrope, has been settled. Cyclo[18]carbon is an all-carbon ring comprised of eighteen interconnected carbon atoms. It is proposed to have two possible structures: the cumulenic structure with only carbon-carbon double bonds (Figure 1a), and the polyynic structure having alternating carbon-carbon triple and single bonds (Figure 1b). Recent experiments have confirmed that the polyynic structure is the stable form, but theorists were still puzzled: Why can’t the various computational methods reach an agreement on the molecular structure of cyclo[18]carbon?

Figure 1. The (a) cumulenic and (b) polyynic structures of cyclo[18]carbon.

Anton J. Stasyuk and coworkers from the University of Girona, Spain, offered an answer in ChemComm (DOI: 10.1039/C9CC08399E). They found that the simulated structure strongly depended on the type of functionals used in density functional theory (DFT), which is a computational tool to derive energy-minimum molecular structures. The functionals used for DFT calculations are mathematical terms that can tune the simulation accuracy.

The authors discovered that the weight of the exact exchange term (HF% exchange) in the DFT functionals determined the most stable simulated structure of cyclo[18]carbon. The researchers compared 13 functionals with various percentages of HF% exchanges. They found that functionals with the HF% exchange higher than 50% predicted the appreciably different lengths of the neighboring bonds (quantified as the bond length alternation, the vertical axis of Figure 2), corresponding to the polyynic structure (Figure 2, red zone). This structure was recently observed experimentally. Functionals with lower HF% exchange either obtained the cumulenic structure (Figure 2, green zone) or the mixed cumulenic-polyynic structure (Figure 2, gray zone).

Figure 2. Variation in the HF% exchange of the B3LYP functional changed the predicted molecular structure of cyclo[18]carbon. BLA: Bond length alternation.

With the correct functionals identified, the authors revealed the electronic properties of cyclo[18]carbon. Calculations showed that cyclo[18]carbon was a strong electron acceptor, making it the smallest all-carbon electron acceptor reported so far.

 

To find out more, please read:

Cyclo[18]Carbon: Smallest All-Carbon Electron Acceptor

Anton J. Stasyuk, Olga A. Stasyuk, Miquel Solà, and Alexander Voityuk

Chem. Commun., 2019, DOI: 10.1039/C9CC08399E

Tianyu Liu acknowledges Zac Croft at Virginia Tech, U.S., for his careful proofreading of this post.

 

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from the University of California, Santa Cruz, in the United States. He is passionate about the communication of scientific endeavors to both the general public and other scientists with diverse research expertise to introduce cutting-edge research to broad audiences. He is a blog writer for Chem. Comm. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

How does LiNO3 Make Lithium–Sulfur Batteries Long-Lasting?

Lithium–sulfur (Li–S) batteries are rechargeable batteries with elemental sulfur and metallic lithium as the cathode and anode, respectively. These batteries are promising electrochemical energy storage devices because their energy densities are three to five times higher than those of Li-ion batteries. Unfortunately, the practicality of Li–S batteries is hindered by their short lifetimes due to two processes that occur on the Li anode surface: the growth of Li dendrites and the irreversible polysulfide reduction. Adding LiNO3 into battery electrolytes has proven to be useful to prolong battery lifetimes, but the underlying mechanism is uncertain.

In Chemical Communications (doi: 10.1039/c9cc06504k), Sawangphruk and coworkers from Vidyasirimedhi Institute of Science and Technology, Thailand have offered valuable insights to settle the dispute over the effects of LiNO3. The researchers performed theoretical reactive molecular dynamics simulations and elucidated two roles of LiNO3 in Li–S batteries.

The first discovery was that LiNO3 promoted the formation of smooth, double-layered solid electrolyte interfaces (SEIs) on the Li surface. SEIs are thin layers composed of electrolyte-decomposition products, including Li-containing organic compounds and inorganic salts. By simulating the charge distribution near a Li metal surface, the authors mapped the Li-Li radial pair distribution profiles in three phases (Fig. 1a). The similarity between the profiles of the dense phase (the Li metal) and the nest phase evidenced the presence of an amorphous, Li-containing layer atop the Li metal surface. Beyond this amorphous layer was a liquid-like film with Li element distributed homogenously. This double-layered SEI altered the kinetics of Li deposition onto the Li surface upon charging, resulting in smooth and dense SEIs (Figs. 1b and c) that avoided Li dendrite formation.

Figure 1. (a) Li-Li radial pair distribution functions of the dense phase (Li metal), nest phase (the layer atop Li), and disperse phase (the outermost layer). (b and c) Top-view scanning electron microscopy images of the Li metal surface in (b) LiNO3-free and (c) LiNO3-containing electrolytes. Both electrolytes had lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a solute, and 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) as solvents.

Another effect of LiNO3 was to capture polysulfide compounds. Through their simulations, the authors deduced the reaction pathways involving the electrolyte molecules, LiNO3 or LiClO4 additives, and lithium polysulfide compounds (Fig. 2a). The concentration of LixNOy, the reduction products of LiNO3 when contacted Li metal, in the LiNO3-containing electrolyte was much higher than those in the additive-free and LiClO4-containing electrolytes. First-principle calculations proved that the highly electro-negative N and O atoms in LixNOy could capture lithium polysulfides via dipole-dipole interactions. This process reduced the likelihood of polysulfide reduction on Li that passivated anodes.

Figure 2. (a) A scheme of the reaction pathways involving the electrolyte, additive, and polysulfide molecules. (b) Product distributions in electrolytes without additives and with LiNO3 or LiClO4.

LiNO3 elongates the lifetimes of Li–S batteries by forming smooth SEIs to impede Li dendrite formation, while maintaining the reactivity of Li anodes by capturing lithium polysulfides.

 

To find out more, please read:

Insight into the Effect of Additives Widely Used in Lithium–Sulfur Batteries

Salatan Duangdangchote, Atiweena Krittayavathananon, Nutthaphon Phattharasupakun, Nattanon Joraleechanchai, and Montree Sawangphruk

Chem. Commun., 2019, 55, 13951-13954

Tianyu Liu acknowledges John Elliott of Virginia Tech, the U.S., for his careful proofreading of this post.

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from the University of California, Santa Cruz, in the United States. He is passionate about the communication of scientific endeavors to both the general public and other scientists with diverse research expertise to introduce cutting-edge research to broad audiences. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Strengthening Li+-Coordination Decelerates Li-Dendrite Growth in Li-Metal Batteries

Lithium-metal batteries are a family of rechargeable batteries with higher charge-storage capacities than those of lithium-ion batteries. The boosted charge-storage performance of lithium-metal batteries is rooted in its anode material – Li metal, as it possesses an ultrahigh theoretical capacity (3860 mAh/g). However, the growth of dendrites on Li surfaces during charging could short-circuit batteries, cause combustion, and trigger explosions.

A research group led by Feng Li at the Institute of Metal Research, Chinese Academy of Sciences, recently devised a strategy to suppress the notorious Li dendrite growth in lithium-metal batteries. By tuning the composition of the electrolytes, the authors strengthened the coordination between Li+ and electrolyte solvents, which slowed the growth of Li dendrites. This work has been published in Chemical Communications (doi: 10.1039/C9CC07092C).

The researchers introduced an electrolyte additive, tetraethylene glycol dimethyl ether (TEGDME), as a coordination ligand to Li+. Compared to other components in the electrolyte, i.e., 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL), TEGDME contains more oxygen atoms that can form multiple, robust coordination bonds with Li+. Specifically, density functional theory calculations showed that the binding energy between Li+ and electrolyte molecules increased by 0.31 eV after introducing TEGDME, reaching an absolute value of 4.93 eV. The enhanced binding force made the separation of Li+ from TEGDME (a prerequisite for Li-dendrite growth) energetically consuming and kinetically sluggish (Figure 1). These characteristics could decelerate Li-dendrite formation and elongate battery lifetimes.

Figure 1. Lithium-dendrite growth in different electrolytes: (a) weak coordination with Li+ promotes fast dendrite growth while (b) strong coordination with Li+ decelerates dendrite formation.

To confirm the above idea, the authors assembled lithium batteries with TEGDME+DME+DOL or DME+DOL electrolytes. Cycling stability tests demonstrated that the battery with the TEGDME-added electrolyte survived 60 charge-discharge cycles at a current density of 1C, whereas the capacity of the battery without TEGDME rapidly decayed beyond 30 cycles under identical testing conditions (Figure 2a). Scanning electron microscopy images revealed that the number of rod-shaped Li dendrites on the anode in the TEGDME-added electrolyte (Figure 2c) was less than that in the TEGDME-free electrolyte (Figure 2b), further confirming that the enhanced cycling stability resulted from the Li-dendrite suppressing effect of TEGDME.

Figure 2. (a) Cycling stability performance of lithium-metal batteries with two different electrolytes. The cathode material in both batteries was lithium iron phosphate (LFP). (b and c) SEM images of the Li anode surface after charging in (b) DME+DOL and (c) DME+DOL+TEGDME electrolytes.

This work highlights the importance of tailoring the electrolyte composition for preserving the stability and safety of lithium-metal batteries.

 

To find out more, please read:

Suppressing Lithium Dendrite Formation by Slowing Its Desolvation Kinetics

Huicong Yang, Lichang Yin, Huifa Shi, Kuang He, Hui-Ming Cheng, and Feng Li

Chem. Commun., 2019, doi: 10.1039/C9CC07092C

Tianyu Liu acknowledges Xiaozhou Yang of Virginia Tech, the U.S., for his careful proofreading of this post.

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from the University of California, Santa Cruz, in the United States. He is passionate about the communication of scientific endeavors to both the general public and other scientists with diverse research expertise as a way to introduce cutting-edge research to broad audiences. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Synthesizing Polymers Using CO2

Ring-opening polymerizations produce commercial polymeric materials including epoxy resins, but they usually liberate small molecules such as the greenhouse gas, CO2. In the context of climate change, it is urgent to reduce CO2 emissions. Recently, a group of UK researchers led by Prof. Charlotte K. Williams at the University of Oxford developed a step-growth polymerization method that self-consumed CO2. The work has been published in a recent issue of Chemical Communications.

The synthesis involved two catalytic cycles (Figure 1). The first cycle polymerized L-lactide-O-carboxyanhydride into poly(L-lactide acid) (PLLA) via a ring-opening polymerization and released one CO2 molecule per polymer repeat unit. In the second cycle, epoxide molecules (cyclohexeneoxide) combined with the CO2 generated in the first step and grew into poly(cyclohexene carbonate) (PCHC) from the terminal ends of the PLLA chains. A di-zinc-alkoxide compound catalyzed both cycles and coupled the two processes together. The product is PLLA-b-PCHC block copolymers, which are composed of PLLA and PCHC covalently tethered together.

Figure 1. The two catalytic cycles are joined by a zinc-based catalyst, [LZn2(OAc)2]. The CO2 gas produced in the first step serves as a reactant in the second step. OCA: O-carboxyanhydride; ROP: ring-opening polymerization; CHO: cyclohexeneoxide; ROCOP: ring-opening copolymerization.

The two reactions resulted in block copolymers with few byproducts. In-situ 1H NMR revealed that the reactants in the first step (LLAOCA) were rapidly consumed during the first four hours (Step I, Figure 2a), and the concentration of PLLA increased notably. The concentration of PCHC only markedly increased after the concentration of PLLA saturated (Step II, Figure 2a). The byproduct of the second step, trans-cyclohexene carbonate, exhibited consistently low concentrations. The pronounced single peak in each size-exclusion chromatogram of the corresponding product confirmed the presence of block copolymers, instead of polymer mixtures (Figure 2b). Although the authors did not fully elucidate the origin of the excellent selectivity towards the block copolymer, they speculated that the change in CO2 partial pressure played a role. Significantly, nearly all CO2 molecules were consumed in the second step, with 91% incorporated into the block copolymer, and 9% converted to the byproduct.

Figure 2. (a) The evolution of the concentrations of PLLA, PCHC, and trans-CHC (the byproduct of the second step) with reaction time. (b) Size-exclusion chromatograms of the products at different reaction times. Mn: number-average molecular weight; Đ: polydispersity.

The authors are investigating the detailed polymerization mechanism, as well as identifying new catalysts to expand the polymerization scheme to other polymers.

 

To find out more, please read:

Waste Not, Want Not: CO2 (Re)cycling into Block Copolymers

Sumesh K. Raman, Robert Raja, Polly L. Arnold, Matthew G. Davidson, and Charlotte K. Williams

Chem. Commun., 2019, 55, 7315-7318

 

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

1+1>2: Bridging Constituents in Hetero-Structured Hydrogen Evolution Photocatalysts

Solar-driven water reduction is a sustainable method to acquire hydrogen fuel. An indispensable component of this reaction is the photocatalyst which drives spontaneous hydrogen gas evolution from water when illuminated. Hetero-structured materials consisting of two or more catalysts stand out as promising hydrogen evolution catalysts, due to the combined advantages of their constituents (e.g. enhanced light-absorption capability). Unfortunately, the weak adhesion between different components is the Achilles heel of conventional hetero-structured photocatalysts. It impedes electron transport from the photocatalysts to the nearby water molecules, hindering the catalytic activity.

A research group led by Xiao Xiao and Jian-Ping Zou from Nanchang Hangkong University of China has demonstrated a solution to the aforementioned challenge. They firmly connected two photocatalysts – Pt-loaded carbon nitride (CN) and the covalent organic framework CTF-1 – via amide bonds, resulting in a new type of hetero-structured photocatalyst, CN/CTF-1, which exhibited a hydrogen evolution rate approximately 3 times faster than those of conventional hetero-structured photocatalysts made of weakly bound CN and CTF-1.

The researchers adopted a two-step method to synthesize CN/CTF-1. They first reacted CTF-1 sheets with 4-aminobenzoic acid to graft carboxylic groups onto the surfaces of the CTF-1 sheets. A subsequent amide condensation between the amine groups of the CN and the carboxyl groups on the CTF-1 bridged the two components. The amide groups serve as electron transport pathways and facilitate the movement of photo-excited electrons from CTF-1 to CN (Figure 1a) which liberates hydrogen gas.

The covalent amide “bridges” gave CN/CTF-1 a fast hydrogen production rate. Quantitatively, when irradiated with a 300 W Xe lamp at 160 mW/cm2, CN/CTF-1 produced ~4 mmol H2 per gram of CN/CTF-1 after 4 h (0.85 mmol H2 h-1 gcatalyst-1), whereas under identical conditions, weakly adhered CN and CTF-1 sheets as well as a physical mixture of CN and CTF-1 all achieved H2 evolution rates of ~1 mmol H2 per gram of photocatalyst (0.30 mmol H2 h-1 gcatalyst-1) (Figure 1b).

Figure 1. (a) (Pt-loaded) CN sheets are covalently bound to CTF-1 sheets via amide bonds. These covalent bonds serve as electron transport “bridges” that facilitate the diffusion of photo-excited electrons from CTF-1 to CN. (b) H2 evolution rates of four photocatalysts: 1 – covalently bound CN/CTF-1; 2 and 3 –  weakly adhered CN and CTF-1; 4 – a physical mixture of CN and CTF-1.

The covalent bonding strategy is applicable to other coupling reactions such as the Friedel-Crafts reaction. This general method could create a new paradigm for designing and synthesizing high-performance hetero-structured photocatalysts.

 

To find out more please read:

A General Strategy via Chemically Covalent Combination for Constructing Heterostructured Catalysts with Enhanced Photocatalytic Hydrogen Evolution

Gang Zhou, Ling-Ling Zheng, Dengke Wang, Qiu-Ju Xing, Fei Li, Peng Ye, Xiao Xiao, Yan Li, and Jian-Ping Zou

Chem. Commun., 2019, 55, 4150-4153

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A Battery Cathode with a Bee Pupa-Filled Honeycomb Structure

Increasing the volumetric energy densities of batteries is essential for improving the durability of portable electronics and the operating ranges of electric vehicles. One way to improve energy density is to enlarge the mass fraction of active materials in battery electrodes; however, the degree of enhancement remains limited. This limitation results from the densification of the electrodes when the mass fraction increases, making electron transport and ion diffusion throughout the electrodes sluggish. These drawbacks lower the utilization efficiency of the overall electrode materials.

A team of scientists from China and the United States has recently addressed the aforementioned challenges. Specifically, they synthesized a 3D cathode of carbon-coated Li2MnSiO4 (Li2MnSiO4/C) with a structure mimicking a honeycomb filled with bee pupas (Fig. 1). This lithium-ion battery cathode possesses a high mass fraction of 90% (of overall electrode mass) as well as a volumetric energy density as high as 2443 Wh/dm3.

The uniquely structured electrodes were prepared through a hard-template method (Fig. 1). Using polystyrene particles, silica surface coating, and Li2MnSiO4 precursor infiltration, the authors synthesized a carbon-coated Li2MnSiO4 honeycomb scaffold with each cavity filled with a carbon-coated Li2MnSiO4 particle. This architecture differed from previously reported 3D structures, which typically had a large portion of voids, and enabled an ultrahigh active-material mass loading of 90 wt.%. Additionally, the gaps between the scaffold and the particles functioned as ion-diffusion channels, and the carbon coatings served as electron-transport expressways. These characteristics effectively addressed the problem of sluggish ion diffusion and electron transport.

Figure 1. The synthesis procedures of the BPFH-shaped Li2MnSiO4/C electrode. The green particles and yellow scaffold represent polystyrene spheres and the silica coating, respectively.

Due to the facilitated electron transport and ion diffusion, the Li2MnSiO4/C electrode with a bee pupa-filled honeycomb (BPFH) structure (Fig. 2a) exhibited an outstanding charge-storage performance. Specifically, it delivered a high volumetric capacity of 643 mAh/cm3 at a current density of 0.1 C, corresponding to a volumetric density of 2443 Wh/dm3. This volumetric capacity was approximately two times higher than that of a Li2MnSiO4/C honeycomb lattice without any Li2MnSiO4 particles (Fig. 2b). After 100 consecutive charge-discharge cycles, the BPFH-shaped Li2MnSiO4/C electrode retained a volumetric capacity of 328 mAh/cm3 (Fig. 2c).

Figure 2. (a and b) Scanning electron microscopy images of (a) the BPFH-shaped Li2MnSiO4/C electrode and (b) the Li2MnSiO4/C scaffold. (c) The capacities and the Coulombic efficiencies of the two electrodes during 100 charge-discharge cycles.

The demonstrated BPFH architecture could be extended to other materials for the synthesis of battery electrodes with both high mass fractions of active materials and outstanding volumetric energy densities.

 

To find out more please read:

A Bee Pupa-Infilled Honeycomb Structure-Inspired Li2MnSiO4 Cathode for High Volumetric Energy Density Secondary Batteries

Jinyun Liu, Xirong Lin, Huigang Zhang, Zihan Shen, Qianqian Lu, Junjie Niu, Jinjin Li and Paul V. Braun

Chem. Commun., 2019, 55, 3582-3585

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Saving Organic Electrodes in Lithium-Ion Batteries

Organic compounds with conjugated electron structures are emerging as promising Li-ion battery cathodes due to their high capacity and environmental benignity. To make these cathodes practically feasible, organic electrodes are typically incorporated with metal ions to boost their energy densities. The addition of metal ions, however, usually jeopardizes the structural integrity of the electrodes and shortens battery lifetime.

Recently, three groups of Chinese researchers demonstrated that increasing the electrolyte concentration could effectively prolong the lifespan of metal-incorporated organic cathodes. The researchers studied cuprous tetracyano-quinodimethane (CuTCNQ), a Cu2+-containing organic Li-ion battery cathode, and observed its significantly improved cycling stability in a 7 M LiClO4 electrolyte compared to a 1 M electrolyte. This work was published recently in ChemComm.

CuTCNQ in a typical diluted electrolyte of 1 M LiClO4 exhibited unsatisfactory stability. Its first-cycle charging capacity reached ~180 mAh/g, but it dropped appreciably to 23 mAh/g after the first discharging process (Figure 1a). Concurrently, the electrolyte turned from clear to yellow (Figure 1b), due to the dissolution of TCNQ. These observations unequivocally showed the rapid disintegration of CuTCNQ in diluted electrolytes.

Figure 1. (a) The first-cycle charge-discharge profile of CuTCNQ in a liquid electrolyte containing ethylene carbonate (EC), propylene carbonate (PC) and 1 M LiClO4 (1 M LiClO4-EC/PC). (b) Photographs showing the electrolyte color before and after the first charge-discharge cycle.

CuTCNQ was found to be more stable in electrolytes with concentrations higher than 1 M. When the LiClO4 concentration increased to 3 M, 5 M and 7 M, the specific capacities of CuTCNQ retained after 50 consecutive charge-discharge cycles were ~25 mAh/g, ~70 mAh/g, and ~110 mAh/g, respectively (Figure 2a). All of these capacities were higher than that of CuTCNQ in 1 M LiClO4 after the same cycle number (<10 mAh/g). Additionally, the electrolytes experienced nearly no color change, suggesting little TCNQ was dissolved (Figure 2b).

The elevated stability of CuTCNQ correlates to the formation of Li+-ClO4 ion pairs in concentrated electrolytes (Figure 2c). With increasing LiClO4 concentration, Li+ and ClO4 tend to form ion pairs that coordinate with solvent molecules. Solvent-coordination reduces the number of free solvent molecules that can dissolve TCNQ, thus minimizing the dissolution of TCNQ.

Figure 2. (a) The cycling stability performances of CuTCNQ with electrolytes with different LiClO4 concentrations. (b) Photographs showing the electrolyte color before and after 50 charge-discharge cycles at different LiClO4 concentrations. (c) Li+ and ClO4- form solvent-coordinated ion pairs in super-concentrated electrolytes (e.g., 7 M).

This work provides a facile approach to mitigate the capacity fading of CuTCNQ. The strategy may be extended to stabilize other metal-incorporated organic cathodes in Li-ion batteries.

To find out more please read:

Sustainable Cycling Enabled by A High-Concentration Electrolyte for Lithium-Organic Batteries

Ying Huang, Chun Fang, Wang Zhang, Qingju Liu and Yunhui Huang

Chem. Commun., 2019, 55, 608-611

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Shrinking the Size of Hydrogen Evolution Catalysts by Carbon Coating

Hydrogen gas is a zero-emission energy resource promising to replace diminishing fossil fuels. The electrolysis of water is a sustainable way to acquire hydrogen gas, but this non-spontaneous process demands electricity to proceed. Therefore, hydrogen evolution reaction (HER) catalysts are used to reduce the energy cost or overpotential of the electrolysis.

Researchers are pursuing ultrafine nanoparticles as HER catalysts due to their high catalytic activity. For example, the HER catalytic activities of Ru nanoparticles are reportedly 100-200% higher than those of bulk Ru catalysts. Unfortunately, the preparation of well-dispersed nanoparticles is challenging because nanoparticles are prone to aggregate together.

Recently in ChemComm, Fuqiang Chu, Yong Qin and coworkers from Changzhou University, China addressed the challenge. They utilized a Ru-based coordination complex and cyanuric acid as the reactants, and synthesized high-performance HER catalysts composed of ~2 nm Ru nanoparticles uniformly dispersed on graphene sheets. During the thermal annealing step in the synthesis, the ligands of the complex and the cyanuric acid both decompose to nitrogen-doped carbon shells covering the as-formed Ru nanoparticles. These shells serve as spacers that prevent particle aggregation (Figure 1).

Figure 1. An illustration of the synthesis of carbon-coated Ru ultrafine nanoparticles on graphene sheets. Tris(2,2′-bipyrindine) ruthenium dichloride is the precursor of the Ru nanoparticles.

In both the acidic and the alkaline electrolytes, the 2 nm Ru particles (RuNC-2) display lower overpotentials and higher current densities than the 5 nm Ru particles (Figure 2) without the carbon coating (RuNC-5). Remarkably, the 2 nm particles showed comparable performance to the benchmark Pt catalyst in the acidic electrolyte (the red and black curves in Figure 2a).

Figure 2. Linear sweep voltammograms of ~3 nm Pt nanoparticles (PtNC), 2 nm Ru nanoparticles (RuNC-2) and 5 nm Ru nanoparticles (RuNC-5) in (a) 0.5 M H2SO4 and (b) 1 M KOH aqueous solutions.

The concept of the in-situ generation of protective coatings could inspire the synthesis of other ultra-small nanoparticles to potentially push the HER catalytic performance to new heights.

 

To find out more please read:

An Ultrafine Ruthenium Nanocrystal with Extremely High Activity for the Hydrogen Evolution Reaction in Both Acidic and Alkaline Media

Yutong Li, Fuqiang Chu, Yang Liu, Yong Kong, Yongxin Tao, Yongxin Li and Yong Qin

Chem. Commun., 2018, DOI: 10.1039/c8cc08276f

 

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The Birth of a Semiconducting Metal Organic Framework by Sulfur Coordination

Metal organic frameworks (MOFs) are crystalline nanomaterials composed of metal ions or clusters coordinated with organic ligands. Owing to the versatility of their building blocks, MOFs have multiple functionalities and can serve as gas separators, sensors, catalysts, electrode materials etc. Now the structure diversity of MOFs is further enriched by Wu and coworkers from Soochow University, China. Specifically, the researchers synthesized a semiconducting MOF with tetra-coordinated sulfur units. This breakthrough was recently published in ChemComm.

The uniqueness of the synthesized semiconducting MOF (MCOF-89) is its square-planar tetra-coordinated metal-sulfur structure, which is observed in MOFs for the first time. It was believed that putting a sulfur atom next to a metal node of MOFs was extremely difficult, because of the large discrepancy in bonding energy between metal-sulfur bonds and conventional metal-carboxylate bonds. Incorporating sulfur atoms thereby could undermine the structural stability of MOFs.

The authors addressed this challenge by designing a tetra-coordination environment as illustrated in Figure 1. The four manganese-sulfur bonds effectively reinforced the unstable S coordination. MCOF-89 was synthesized via a solvothermal reaction with Mn(CH3COO)2 and thiourea as the Mn and S sources, respectively.

Figure 1. The structure of MCOF-89. The illustration on the left is a three-dimensional lattice structure (the red, green and yellow balls represent oxygen, manganese and sulfur), and the structure on the right shows the Mn-S square-planar tetra-coordination configuration (M = manganese).

The synthesized S-incorporated MOF is a semiconductor with a bandgap of 2.82 eV. Additionally, this MOF is photoactive and is able to generate a photocurrent of ~1.9 µA/cm2 upon light irradiation.

This work exemplifies how molecular design can lead to the discovery of novel MOFs with extraordinary structures. It could also inspire other synthesis protocols toward various metal-chalcogenide-containing MOFs with unexpected properties.

 

To find out more please read:

A Semiconducting Metal-Chalcogenide–Organic Framework with Square-Planar Tetra-Coordinated Sulfur

Huajun Yang, Min Luo, Zhou Wu, Wei Wang, Chaozhuang Xue and Tao Wu

Chem. Commun., 2018, 54, 11272-11275

 

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

How do Anions Fight Indoor Organic Contaminants?

Indoor air quality is critical to public health. Chronic exposure to indoor organic contaminants (IOCs), including aldehydes and benzene homologues, substantially increases the risk of having respiratory diseases. In recent years, negative air ions (NAIs) have emerged as promising materials to decompose IOCs. NAIs are negatively charged ions generated via ionizing air. However, the limited understanding of the decomposition reaction mechanisms hinders the safety evaluation and wide adoption of NAI-cleaning.

A group of Chinese researchers led by Jin-Ming Lin of Tsinghua University recently demonstrated in ChemComm a powerful tool to unveil the reaction mechanisms. They built a system integrated with an NAI generator, an IOC sprayer and a mass spectrometer (Figure 1). NAIs containing mostly CO3 were produced by the ionization of air. These anions then mixed and reacted with the sprayer-delivered IOCs in front of the mass spectrometer inlet. All species generated during the reactions were directly brought into the mass spectrometer by inert N2 for characterization.

Figure 1. The experimental set-up of the integrated system.

This device revealed real-time reaction kinetics by identifying the reaction intermediates. The mass spectrum of a common IOC, formaldehyde, when reacted with CO3 is presented in Figure 2a. Two pronounced peaks with mass to charge ratios (m/z) of 45.10 and 60.10 were assigned to HCOO and CO3, respectively. Additionally, the 45.10 peak was only detected when formaldehyde was present (Figure 2b). On the basis of these observations, the authors concluded that the major pathway of formaldehyde degradation by CO3was the reaction between CO3 and the α-H atom of the aldehyde group. With identical instrumentation, the authors also proposed how the reactions between CO3 and benzene homologues or esters may proceed.

Figure 2. (a) The mass spectrum of reaction intermediates between CO3 and 10 ppm formaldehyde. (b) The change of peak intensities of m/z = 60.10 and 45.10 peaks with the operation time. Formaldehyde was present during 7.0-14.0 min.

The results obtained by this study could greatly deepen the understanding of NAI-based chemistry. It could also be useful to investigate kinetics of a broad range of other chemical reactions involving charged reactants.

 

To find out more please read:

Real-Time Characterization of Negative Air Ion-Induced Decomposition of Indoor Organic Contaminants by Mass Spectrometry

Ling Lin, Yu Li, Mashooq Khan, Jiashu Sun and Jin-Ming Li

Chem. Commun., 2018, DOI: 10.1039/c8cc05795h

 

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)