The Cram Lehn Pedersen Prize in Supramolecular Chemistry


 

The International Committee of the International Symposium on Macrocyclic and Supramolecular Chemistry is pleased to invite nominations for the Cram Lehn Pedersen Prize for young supramolecular chemists.

The Cram Lehn Pedersen Prize, named in honor of the winners of the 1987 Nobel Prize in Chemistry, will recognise significant original and independent work in supramolecular chemistry.

Those who were awarded their PhD on or after 1st January 2009 (or who have an award of PhD date together with allowable career interruptions* that would be commensurate with award of their PhD on or after 1st January 2009) are eligible for the 2020 award. The winner will receive a prize of £2000 and free registration for the ISMSC meeting in Sydney, Australia. In addition to giving a lecture at ISMSC, a short lecture tour will be organized after the meeting in consultation with the Editor of Chemical Communications, the sponsor of the award.

Nomination Details

You may nominate yourself, but a nomination letter is recommended. Nomination materials should include: CV, list of publications (divided into publications from your PhD and post-doc, and those from your independent work), and be sent to Prof. Roger Harrison (ISMSC Secretary) at roger_harrison@byu.edu by 31st December 2019.

*Allowable career interruptions include primary caregiver’s responsibilities, illness, disability or parental leave and must be outlined in a cover letter with supporting documentation. See  https://www.chem.byu.edu/faculty-and-staff/resources/international-symposium-on-macrocyclic-and-supramolecular-chemistry/awards/ for specific details.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Strengthening Li+-Coordination Decelerates Li-Dendrite Growth in Li-Metal Batteries

Lithium-metal batteries are a family of rechargeable batteries with higher charge-storage capacities than those of lithium-ion batteries. The boosted charge-storage performance of lithium-metal batteries is rooted in its anode material – Li metal, as it possesses an ultrahigh theoretical capacity (3860 mAh/g). However, the growth of dendrites on Li surfaces during charging could short-circuit batteries, cause combustion, and trigger explosions.

A research group led by Feng Li at the Institute of Metal Research, Chinese Academy of Sciences, recently devised a strategy to suppress the notorious Li dendrite growth in lithium-metal batteries. By tuning the composition of the electrolytes, the authors strengthened the coordination between Li+ and electrolyte solvents, which slowed the growth of Li dendrites. This work has been published in Chemical Communications (doi: 10.1039/C9CC07092C).

The researchers introduced an electrolyte additive, tetraethylene glycol dimethyl ether (TEGDME), as a coordination ligand to Li+. Compared to other components in the electrolyte, i.e., 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL), TEGDME contains more oxygen atoms that can form multiple, robust coordination bonds with Li+. Specifically, density functional theory calculations showed that the binding energy between Li+ and electrolyte molecules increased by 0.31 eV after introducing TEGDME, reaching an absolute value of 4.93 eV. The enhanced binding force made the separation of Li+ from TEGDME (a prerequisite for Li-dendrite growth) energetically consuming and kinetically sluggish (Figure 1). These characteristics could decelerate Li-dendrite formation and elongate battery lifetimes.

Figure 1. Lithium-dendrite growth in different electrolytes: (a) weak coordination with Li+ promotes fast dendrite growth while (b) strong coordination with Li+ decelerates dendrite formation.

To confirm the above idea, the authors assembled lithium batteries with TEGDME+DME+DOL or DME+DOL electrolytes. Cycling stability tests demonstrated that the battery with the TEGDME-added electrolyte survived 60 charge-discharge cycles at a current density of 1C, whereas the capacity of the battery without TEGDME rapidly decayed beyond 30 cycles under identical testing conditions (Figure 2a). Scanning electron microscopy images revealed that the number of rod-shaped Li dendrites on the anode in the TEGDME-added electrolyte (Figure 2c) was less than that in the TEGDME-free electrolyte (Figure 2b), further confirming that the enhanced cycling stability resulted from the Li-dendrite suppressing effect of TEGDME.

Figure 2. (a) Cycling stability performance of lithium-metal batteries with two different electrolytes. The cathode material in both batteries was lithium iron phosphate (LFP). (b and c) SEM images of the Li anode surface after charging in (b) DME+DOL and (c) DME+DOL+TEGDME electrolytes.

This work highlights the importance of tailoring the electrolyte composition for preserving the stability and safety of lithium-metal batteries.

 

To find out more, please read:

Suppressing Lithium Dendrite Formation by Slowing Its Desolvation Kinetics

Huicong Yang, Lichang Yin, Huifa Shi, Kuang He, Hui-Ming Cheng, and Feng Li

Chem. Commun., 2019, doi: 10.1039/C9CC07092C

Tianyu Liu acknowledges Xiaozhou Yang of Virginia Tech, the U.S., for his careful proofreading of this post.

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from the University of California, Santa Cruz, in the United States. He is passionate about the communication of scientific endeavors to both the general public and other scientists with diverse research expertise as a way to introduce cutting-edge research to broad audiences. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MOF-Derived Solid-State Lithium-Oxygen Batteries

Just in case you weren’t aware, it turns out that lithium-based batteries are kind of a big deal. While the Nobel-winning batteries have already revolutionized consumer electronics, further development requires batteries with even higher energy densities. Enter: lithium-oxygen batteries (LOBs) with theoretical energy densities of 3500 W h/kg. LOBs come in non-aqueous, aqueous, hybrid, and solid-state varieties based on their electrolytes. Given the previous safety issues for lithium-based batteries with liquid electrolytes (remember the exploding phones?), solid-state electrolytes have attracted substantial research attention. Specifically, Li1+xAlxGe2x(PO4)3, or LAGP, shows promise given its high Li+ transport number and electrochemical stability over a wide window. These solid-state electrolytes need to be combined with new catalytically active high surface area cathode materials that will not react with the lithium and degrade, a persistent issue with MOFs.

Figure 1. Schematic of an assembled all solid-state lithium-oxygen battery.

Researchers in China and Japan have combined LAGP electrolyte with NiCo2O4 (NCO) nanoflakes as the catalytically active cathode material. They then assembled full solid-state batteries, the structure of which is shown in Figure 1, for electrochemical and stability testing. The LAGP was prepared using previously established methods and found to exhibit the expected high stability and lithium mobility. To prepare the nanoflakes, the researchers annealed cobalt-based MOFs on a sacrificial carbon substrate then dipped them in a Ni(NO3)2 solution for nickel doping and annealed once more. This leaves the final nanostructured metal oxide, with the elemental composition confirmed by TEM elemental mapping. As a conveniently freestanding electrode material, the nanoflakes were then loaded in as the cathode.

Once assembled, the researchers tested the full all solid-state LOBs for stability and performance. They demonstrated high discharge capacity and electron transfer efficiency with charge and discharge potentials well within the electrochemical window of the LAGP electrolyte. These are attributable to the high lithium ion mobility and the porous bimetallic nature of the cathode. To confirm that the incorporation of nickel impacted the overall device performance, the pure cobalt nanoflakes were used as the cathode.

Figure 2. Cycling performance of cobalt (left) and cobalt-nickel cathodes (right) at a current density of 100 mA/g.

As seen in Figure 2, the cobalt-only batteries exhibit significant capacity loss in only 35 cycles whereas the NCO cathodes showed no degradation after 90 cycles. While cycling the NCO electrodes, the reversible formation of Li2O2, a common discharge product, occurred in the open pores of the cathode. These pores allow the 500 nm Li2O2 particles to form and dissolve without disrupting the structure of the cathode and give a more stable battery. This research brings completely solid-state lithium-oxygen batteries one step closer to reality.

To find out more, please read:

All solid-state lithium–oxygen batteries with MOF-derived nickel cobaltate nanoflake arrays as high-performance oxygen cathodes

Hao Gong, Hairong Xue, Xueyi Lu, Bin Gao, Tao Wang, Jianping He and Renzhi Ma

Chem. Commun., 2019, 55, 10689-10692.

About the blogger:

Beth Mundy is a PhD candidate in chemistry in the Cossairt lab at the University of Washington in Seattle, Washington. Her research focuses on developing new and better ways to synthesize nanomaterials for energy applications. She is often spotted knitting in seminars or with her nose in a good book. You can find her on Twitter at @BethMundySci.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Chemical Communications: Editor’s Choice

Be sure to read our latest Editor’s Choice article as chosen by Associate Editor Jean-Louis Reymond!

This article is free-to-access until 8th November and can be found alongside our previously chosen articles in our online Editor’s Choice web-collection!

Heptylmannose-functionalized cellulose for the binding and specific detection of pathogenic E. coli” by Jean-Louis Reymond:

In their communication “Heptylmannose-functionalized cellulose for the binding and specific detection of pathogenic E. coli” Madeleine Cauwel et al. exploited the well-known FimH lectin system to devise a selective detection system for adherent-invasive E. coli (AIEC) involved in the pathogenesis of Crohn’s disease (CD). FimH is well known to bind mannosyl glycosides and to occur in AIEC. The trick here was to prepare a modified cellulose (as nanofiber or paper) using click chemistry, profile its lectin binding with state-of-the art chip analysis, verify its ability to block binding of AIEC from a CD patient to intestinal epithelial cells and to decrease AIEC levels in gut microbiota in a murine model, and finally to show that the modified paper binds selectively to pathogenic AIEC but not to benign E. coli.

Simple but effective chemistry, thorough experiments with relevant samples, impressive results. Chemical biology at its best.

 

 

Find our full Editor’s Choice collection online!

Keep up-to-date with our latest journal news on Twitter @ChemCommun or via our blog!

Learn more about ChemComm online! Submit your latest high impact research here!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Emerging Investigator Lectureship – nominations now open!

Know an outstanding emerging scientist who deserves recognition? Nominate now for the 2020 ChemComm Emerging Investigator Lectureship

We are pleased to welcome nominations for the 2020 Emerging Investigator Lectureship for ChemComm.

All nominations must be received by Friday 29th November 2019.

ChemComm Emerging Investigator LectureshipChemComm Banner
• Recognises emerging scientists in the early stages of their independent academic career.
• Eligible nominees should have completed their PhD in 2012 or later.
Appropriate consideration will be given to those who have taken a career break or followed a different study path.

Lectureship details
• The recipient of the lectureship will be invited to present a lecture at three different locations over a 12-month period, with at least one of these events taking place at an international conference.
• The recipient will receive a contribution of £1500 towards travel and accommodation costs for their lectures, as well as a certificate.
• The recipient will be asked to contribute a review article for the journal.

How to nominate
Self-nomination is not permitted. Nominators must send the following to the editorial team via 
chemcomm-rsc@rsc.org by Friday 29th November 2019.
• Recommendation letter, including the name, contact details and website URL of the nominee.
• A one-page CV for the nominee, including a summary of their education, dates of key career achievements, a list of up to five of their top independent publications, total numbers of publications and patents, and other indicators of esteem, together with evidence of career independence.
• A copy of the candidate’s best publication to date (as judged by the nominator).
• Two supporting letters of recommendation from two independent referees. These should not be someone from the same institution or the candidate’s post doc or PhD supervisor.
• The nominator and independent referees should comment on the candidate’s presenting skills.

Incomplete nominations or those not adhering to the above requirements will not be considered, and nominees will not be contacted regarding any missing or incorrect documents.

Selection procedure
• The editorial team will screen each nomination for eligibility and draw up a shortlist of candidates based on the nomination documents provided.
• The recipient of the lectureship will then be selected and endorsed by a selection panel composed of members of the ChemComm Editorial Board. The winner will be announced in the first half of 2020.

NB: Please note that members of the selection panel from the ChemComm Editorial Board are not eligible to nominate, or provide references, for this lectureship.

For any queries, please contact the editorial team at chemcomm-rsc@rsc.org.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Chemical Communications: Editor’s Choice

Be sure to read our Editor’s Choice articles as chosen by Associate Editors Prof. Penny Brothers & Prof. Manfred Scheer!

Both articles are free-to-access until 4th October and can be found alongside our previously chosen articles in our online Editor’s Choice web-collection!

 

NO sorption, in-crystal nitrite and nitrate production with arylamine oxidation in gas–solid single crystal to single crystal reactions” by et al., as chosen by Penny Brothers:

This year marks 100 years since Alfred Werner’s death in 1919, and it is over a century since he won the 2013 Nobel prize for developing the conceptual framework that we now understand as coordination chemistry. Studies on cobalt complexes formed the cornerstone of Werner’s work, and this paper shows they are still relevant and important well into the 21st century, although with some surprising twists.  Single crystals of tetranuclear Co(II) and Co(III) complexes chemisorb nitric oxide (NO) which, after exposure to O2 physisorbed from air, is transformed to nitrite, nitrate and an aryl nitro group in remarkable single crystal to single crystal reactions.  The medical and biological significance of NO and the solventless redox chemistry all occurring in the crystalline phase suggest exciting possibilities for its highly selective capture and conversion.

 

 

Imidazolium-benzimidazolates as convenient sources of donor-functionalised normal and abnormal N-heterocyclic carbenes” by et al., as chosen by Manfred Scheer:

Mesomeric betaines are related to N-heterocyclic carbenes because of their interconversion by tautomerisation and therefore can act as “instant carbenes”. The authors established now imidazolium-benzimidazolates as a new and highly versatile “instant carbene” system. Depending on the steric demand of the imidazole N-substituent, normal but also abnormal NHC carbene coordination is observed. Thus, unstable but nevertheless highly interesting species are available starting from stable betainic precursors. Therefore, this paper contributes substantially to the chemistry of normal and abnormal N-heterocyclic carbenes.

 

 

 

Find our full Editor’s Choice collection online!

Keep up-to-date with our latest journal news on Twitter @ChemCommun or via our blog!

Learn more about ChemComm online! Submit your latest high impact research here!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Mechanical Stress Turns These Dendrimers Blue

We all know what happens when materials take too much mechanical stress – they eventually break.

What if you could easily tell when something like a support was close to its maximum stress, before it undergoes a catastrophic event, just by looking at it? One option is to incorporate a mechanochromic polymer, a polymer that changes color when under sufficient mechanical stress, to provide a visual indicator that a material has reached a specific stress threshold. The polymers don’t need to be entirely composed of mechanochromically active moieties to exhibit useful properties; many studies have focused on a single active mechanophore at the center of a large polymer chain. In fact, the mechanical force is greatest at the center of a chain and is directly proportional to the length of the chains. This holds for polymers in solution but hasn’t been extensively studied in the types of bulk systems useful for applications.

Recently, researchers in Japan set out to characterize the effects of chain length and branching on mechanochromic dendrimers, polymers with monodisperse and regularly branched globular structures. Showing that dendrimers exhibit mechanochromism is already a novel result, but their well-defined nature allowed the researchers to draw correlations between structure and bulk responsiveness. They employed diarylbibenzylfuranone (DABBF) as the mechanochromic moiety since it generates arylbenzofuranone (ABF) radicals, which are blue, air-stable, and electron paramagnetic resonance spectroscopy (EPR) active, when exposed to mechanical force (Figure 1).

Figure 1. Structure of the DABBF moiety and the active ABF radicals generated by its dissociation.

These characteristics allow for straightforward qualitative and quantitative analysis. The team coupled the DABBF moiety with two series of dendrimers, with increasing generations having larger and more highly branched monomer units, to create a range of molecular weights and degrees of branching for study. The dendrimers showed a color change from white to blue (Figure 2) when ground in a ball mill, which was used to ensure the reproducibility of the force applied to all samples.

Figure 2. Photographs of the first (top) and second (bottom) mechanochromic dendrimers before and after grinding, showing the color change associated with the generation of ABF radicals.

EPR measurements confirmed the presence of the ABF radicals in the samples after milling, demonstrating that the color change is due to the cleavage of the DABBF. The integrated EPR spectra were used to quantitatively determine the percentage of DABBF moieties that dissociated. The responsiveness of the dendrimers increased exponentially with increasing generation and branching. However, the primary factor governing ABF generation was found to be molecular weight. Two dendrimers with different levels of chain entanglement, but similar molecular weights, exhibited comparable cleavage ratios.  The question then became does molecular weight increase the transfer efficiency of force to the DABBF or does the increased steric bulk make it harder for the ABF radicals to recombine? To probe the kinetics of this process, the researchers varied the grinding time and saw that within 5 minutes all the highly branched samples reached their maximum dissociation level. Additionally, monitoring the ABF recombination showed that even after 6 hours approximately 95% of the radicals remained dissociated in all 3rd and 4th generation dendrimers. These data suggest that the enhancement in responsiveness can be attributed to better force transmission to the DABBF.

This work shows mechanoresponsiveness in a range of dendrimers with varying degrees of branching and rigidity. Not only did they demonstrate novel activity, but the researchers also probed the mechanism of the enhanced activity with increasing molecular weight. This initial study opens avenues to explore polymer rigidity, surface functionality, and other dendrimer features to design new, functional materials.

To find out more, please read:

Mechanochromic dendrimers: the relationship between primary structure and mechanochromic properties in the bulk

Takuma Watabe, Kuniaki Ishizuki, Daisuke Aoki, and Hideyuki Otsuka

Chem. Commun., 2019, 55, 6831-6834.

About the blogger:

Beth Mundy is a PhD candidate in chemistry in the Cossairt lab at the University of Washington in Seattle, Washington. Her research focuses on developing new and better ways to synthesize nanomaterials for energy applications. She is often spotted knitting in seminars or with her nose in a good book. You can find her on Twitter at @BethMundySci.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Synthesizing Polymers Using CO2

Ring-opening polymerizations produce commercial polymeric materials including epoxy resins, but they usually liberate small molecules such as the greenhouse gas, CO2. In the context of climate change, it is urgent to reduce CO2 emissions. Recently, a group of UK researchers led by Prof. Charlotte K. Williams at the University of Oxford developed a step-growth polymerization method that self-consumed CO2. The work has been published in a recent issue of Chemical Communications.

The synthesis involved two catalytic cycles (Figure 1). The first cycle polymerized L-lactide-O-carboxyanhydride into poly(L-lactide acid) (PLLA) via a ring-opening polymerization and released one CO2 molecule per polymer repeat unit. In the second cycle, epoxide molecules (cyclohexeneoxide) combined with the CO2 generated in the first step and grew into poly(cyclohexene carbonate) (PCHC) from the terminal ends of the PLLA chains. A di-zinc-alkoxide compound catalyzed both cycles and coupled the two processes together. The product is PLLA-b-PCHC block copolymers, which are composed of PLLA and PCHC covalently tethered together.

Figure 1. The two catalytic cycles are joined by a zinc-based catalyst, [LZn2(OAc)2]. The CO2 gas produced in the first step serves as a reactant in the second step. OCA: O-carboxyanhydride; ROP: ring-opening polymerization; CHO: cyclohexeneoxide; ROCOP: ring-opening copolymerization.

The two reactions resulted in block copolymers with few byproducts. In-situ 1H NMR revealed that the reactants in the first step (LLAOCA) were rapidly consumed during the first four hours (Step I, Figure 2a), and the concentration of PLLA increased notably. The concentration of PCHC only markedly increased after the concentration of PLLA saturated (Step II, Figure 2a). The byproduct of the second step, trans-cyclohexene carbonate, exhibited consistently low concentrations. The pronounced single peak in each size-exclusion chromatogram of the corresponding product confirmed the presence of block copolymers, instead of polymer mixtures (Figure 2b). Although the authors did not fully elucidate the origin of the excellent selectivity towards the block copolymer, they speculated that the change in CO2 partial pressure played a role. Significantly, nearly all CO2 molecules were consumed in the second step, with 91% incorporated into the block copolymer, and 9% converted to the byproduct.

Figure 2. (a) The evolution of the concentrations of PLLA, PCHC, and trans-CHC (the byproduct of the second step) with reaction time. (b) Size-exclusion chromatograms of the products at different reaction times. Mn: number-average molecular weight; Đ: polydispersity.

The authors are investigating the detailed polymerization mechanism, as well as identifying new catalysts to expand the polymerization scheme to other polymers.

 

To find out more, please read:

Waste Not, Want Not: CO2 (Re)cycling into Block Copolymers

Sumesh K. Raman, Robert Raja, Polly L. Arnold, Matthew G. Davidson, and Charlotte K. Williams

Chem. Commun., 2019, 55, 7315-7318

 

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Chemical Communications: Editor’s Choice

Featuring exciting research published in ChemComm, hand-picked by our Associate Editors as their favorite recent articles!

Be sure to read our Editor’s Choice articles as chosen by Associate Editors Prof. Jonathan Steed & Prof. Jonathan Sessler!

All articles are free-to-access until 31st August and can be found in our online Editor’s Choice web-collection!

Planar rings in nano-Saturns and related complexes” by Steven M. Bachrach, as chosen by Jonathan Steed:

“This paper lays down the gauntlet to synthetic chemists! The image of a nano-Saturn is immediately eye-catching and scales up molecular host guest chemistry to the multi-nanometre scale. This creative theoretical paper establishes that ortho-nitrogen substitution in aryl macrocycles creates large planar or ribbon structures and then goes on to show that these discs or rings can combine with other nanostructures to construct complexes with interesting shapes. Given the huge interest generated by the mechanically interlocked structures underlying the 2016 Nobel prize in chemistry, these large-scale included systems are real food for thought and I am excited to see if they can be realised experimentally.”

Enhancing selectivity of cation exchange with anion receptors” by 

“These researchers have shown that by using a classic anion binding agent, namely a calix[4]pyrrole, it is possible to modulate the inherent selectivity of liquid-liquid cation extractants. Most current extraction-based separations rely on the use of lipophilic anions as the extractants. These anions, typically the conjugate bases of carboxylic acids, beta-diketones, phosphoric/phosphonic/phosphinic acids, phenols, hydroxyoximes, and sulfonic acids, complex to the cation in question with a selectivity set largely by the local anion-cation coordination environment. However, in this communication the ORNL team has shown that when a calix[4]pyrrole is added to a phenolate-type cation extractant the inherent selectivity is pushed in favor of Cs+ over Na+. This bias in favor of Cs+, which stands in contrast to what would normally be expected, is rationalized in terms of the formation of a highly specific tertiary supramolecular complex involving the calix[4]pyrrole, the anionic phenolate, and the Cs+ cation. Such an organized ternary complex is disfavored in the case of Na+. This work is particularly appealing to me as an Associate Editor for its combination of novelty, insightfulness, and scholarly rigor. It is also attractive to me personally because it demonstrates a new utility for one of my favorite old-but-new molecules, namely calix[4]pyrrole.”

Bonus article: “p-Phosphonic acid calix[8]arene mediated synthesis of ultra-large, ultra-thin, single-crystal gold nanoplatelets” by  et al., as chosen by Jonathan Steed:

“This work reports a very simple system that gives glorious gold nanoplatelets with significant surface area but a thickness of around 6nm. Creating 2D nanocrystals is very challenging and involves highly kinetic conditions. In this case the simple reduction of soluble gold(III) in the presence of a phosphonated acid calix[8]arene macrocycle gives rise to these very well-defined and very unusual morphologies. In this case the role of the calixarene seems to be to attach to the Au(111) surfaces, impeding their growth in one direction and allowing growth in the other to form single-crystal platelets. We are still just scratching the surface of what unusual nanoscale morphologies can do to alter the properties of a material but the present gold nanowafers already show promise as oxygen sensors.”

Find our full Editor’s Choice collection online!

Keep up-to-date with our latest journal news on Twitter @ChemCommun!

Learn more about ChemComm online! Submit your latest high impact research here!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Raffaella Buonsanti and Corinna Schindler: Winners of the ChemComm Emerging Investigator Lectureship 2019!

On behalf of the ChemComm Editorial Board, we are pleased to announce the winners of the 2019 ChemComm Emerging Investigator Lectureship – Raffaella Buonsanti and Corinna Schindler! Our warmest congratulations to Raffaella and Corinna!

Raffaella Buonsanti

Raffaella Buonsanti obtained her PhD in Nanochemistry in 2010 at the National Nanotechnology Laboratory, University of Salento. Afterwards, she moved to the US where she spent over five years at the Lawrence Berkeley National Laboratory, first as a postdoc and project scientist at the Molecular Foundry and after as a tenure-track staff scientist in the Joint Center for Artificial Photosynthesis.

She is currently a tenure-track Assistant Professor in the Institute of Chemical Sciences and Engineering at EPFL in Switzerland. Her group works at the interface of materials chemistry and catalysis, using colloidal chemistry tools to synthesize controlled and tunable nanocrystals and to advance the current knowledge on the electrocatalytic conversion of small molecules into value-added chemicals. You can also learn more about Raffaella’s group and research on Twitter @lnce_epfl.

 

 

 

Corinna Schindler

Corinna was awarded her PhD in 2010 at the ETH Zurich, where she worked with Professor Erick M. Carreira on the total synthesis of Banyaside B and Microcin SF608. She has been awarded several honors during her independent career, including a 2016 David and Lucile Packard Foundation Fellowship, a 2016 NSF CAREER award, a 2018 Alfred P. Sloan Research Fellowship, a 2018 Camille Dreyfus Teacher-Scholar Award, a 2019 Marion Milligan Mason Award, and a 2019 Presidential Early Career Award for Scientists and Engineers.

She is currently an Assistant Professor at the University of Michigan, Ann Arbor and her group’s research focuses on the development of new synthetic transformations relying on environmentally benign metals and the synthesis of complex molecules of biological importance in cancer treatment and infectious diseases. Find more info about Corinna and her group on Twitter @SchindlerLab.

 

 

 

 

As part of the Lectureship award, Raffaella and Corinna will each present lectures at three locations over the coming year, with at least one of these events taking place at an international conference. Details of the lectures will be announced in due course but keep an eye on Twitter @ChemCommun for details!

Keep up-to-date with our latest journal news on Twitter @ChemCommun or via our blog!

Learn more about ChemComm online! Submit your latest high impact research here!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)