Archive for the ‘Supramolecular’ Category

MOFS, ZMOFS and Automobiles

Mohamed Eddaoudi and co-workers at KAUST have synthesised a porous metal organic framework (MOF) constructed from carboxylic acid-functionalised imidazole linkers coordinated to yttrium and potassium cations. The researchers classified this material as a zeolite-like MOF (ZMOF) due to its topological resemblance to the naturally occurring zeolite mineral analcime.

The material’s architecture, with cylindrical channels and a pore aperture measuring 3.8 x 6.2 Å, promised utility as a molecular sieve, and the authors showed the ZMOF could be used to sort small chain alkanes based on their level of branching. Linear and mono-branched pentanes and butanes were adsorbed by the material for different lengths of time (linear isomers were retained longer than their branched counterparts) allowing kinetic separation, while the di-branched alkane 2,2,4-trimethylpentane was excluded entirely. The authors anticipate that this material could have practical applications in crude oil refining, to upgrade petroleum into more energy-efficient fuels with reduced emissions.

ZMOF zeolite-like metal organic framework crystal structure with analcime (ana) topology showing channels and pore aperture.

ZMOF crystal structure with analcime (ana) topology showing channels and pore aperture.

The petroleum used to power internal combustion engines consists of a mixture of low molecular weight, linear and branched alkanes. The research octane number (RON) is a standard measure of petroleum performance, and indicates how much pressure a fuel can withstand before self-igniting (knocking) in the engine. High compression engines, which are more energy efficient and release less emissions than regular engines, require high RON fuels.

The RON increases with the proportion of branched alkanes, so can be improved by supplementing fuels with branched isomers obtained by catalytic isomerisation. This process generates a mixture of linear and branched alkanes, so the desired products must be isolated via fractional distillation, which is energy intensive. This creates a dilemma: high RON fuels are more energy efficient, but their energy-intensive production reduces the net benefit.

The authors envisaged an energy-efficient strategy for increasing the RON of petroleum fuels: A low RON fuel is pumped into the engine, where it encounters a separation chamber consisting of ZMOF-based membranes. The membrane excludes and redirects di-branched alkanes, which have a very high RON, to the internal combustion engine. The low RON fraction, consisting of mono-branched and linear alkanes, passes through the ZMOF pores to undergo further reforming processes downstream. In other words: low RON fuels go in, but high RON fuels are combusted.

Scheme showing how ZMOF materials could be used to upgrade gasoline by separating alkanes based on their level of branching. zeolite-like metal organic framework petroleum reforming

Scheme showing the RON of common small-chain alkanes and the use of ZMOF membranes in upgrading gasoline by separating alkanes based on their level of branching

In this work the authors show the potential of ZMOFs to maximise the energetic potential and reduce emissions of petroleum based fuels, while also offering a glimpse of the more general strategy of energy-efficient separations of chemically-similar molecules using tailored materials.

To find out more please read:

Upgrading gasoline to high octane number using zeolite-like metal organic framework molecular sieve with ana-topology

M. Infas H. Mohideen, Youssef Belmabkhout, Prashant M. Bhatt, Aleksander Shkurenko, Zhijie Chen, Karim Adil, Mohamed Eddaoudi.
Chem. Commun., 2018, 54, 9414-9417
DOI: 10.1039/c8cc04824j

About the author

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Poster Prize winner for the 2nd Early Career Researchers Meeting of the RSC–Macrocyclic and Supramolecular Chemistry Group

Dr Guillaume De Bo (left) presenting the ChemComm prize to Alexander Elmi (right).

The 2nd Early Career Researchers Meeting of the RSC-Macrocyclic and Supramolecular Chemistry (RSC-MASC) Group took place on 27th July 2018 at the University of Manchester, UK. This one-day symposium was organised by Dr. Guillaume De Bo (University of Manchester) and was attended by PhD students and post-doctoral researchers within the supramolecular field.

The meeting consisted of fifteen selected talks from submitted abstracts, and all attendees were invited to present a poster. The day ended with a plenary lecture by Professor Anthony Davis (University of Bristol) on ‘Biomimetic Carbohydrate Recognition:  The Host-Guest Chemistry of Carbohydrates in Water’.

ChemComm was proud to sponsor this successful symposium. Alexander Elmi (University of Edinburgh) received the ChemComm poster prize for his poster entitledUnderstanding Aromatic Stacking Interactions In Solution’.

 

Congratulations Alexander from everyone at ChemComm!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm poster prize winner at the 16th Symposium for Host-Guest and Supramolecular Chemistry

The 16th Symposium for Host-Guest and Supramolecular Chemistry was held on 2 – 3 June 2018 at the Tokyo University of Science in Japan.

This annual symposium covers all aspects of the chemical sciences related to molecular recognition and supramolecular chemistry, including the discussion of topics around intermolecular interactions. The event included a special lecture by Dr Shigeki Sasaki and invited lectures by Dr Takashi Hayashi and Dr Katsuhiko Ariga.

ChemComm is delighted to announce that the ChemComm poster prize was awarded to Hiroshi Koganezawa from the Tokyo University of Science for a poster entitled ‘Synthesis of [2]Rotaxanes with Spirofluorene and Pyrrole Moieties’.

Well done Hiroshi from everyone at ChemComm!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Come for the colour changing crystals, stay for the science

Synthesis of copper bimetallic complexes from imidazolyl ligands, and the solvatochromic materials formed upon crystallization and solvent guest-exchange. The solvatochromic behaviour was quantified with visible-region diffuse reflectance spectra.

Synthesis of copper bimetallic complexes from imidazolyl ligands, and the solvatochromic materials formed upon crystallization and solvent guest-exchange. The solvatochromic behaviour was quantified with visible-region diffuse reflectance spectra.

During the first inorganic chemistry course I took during my undergraduate degree, our professor started the class by passing around some mineral samples, promising us that if we pursued the chemistry of metals we could work with beautifully coloured crystals every day. At the time, colour seemed like such a trite detail amongst the complexity of the subject. Why would you choose a field of study based on something so simple? Well, after a PhD dominated by pale yellow oils, I think I get it now.

Nikolayenko and Barbour at the University of Stellenbosch in South Africa bring us colour! The authors synthesised organometallic copper complexes, which crystallise to form porous single crystals that drastically change colour upon absorption of various solvents. The authors investigated the solvatochromic mechanism using X-ray crystallography, EPR, UV-visible spectroscopy and DFT calculations. Solvatochromic materials are not just made to look pretty; they have potential to be used as sensitive, selective and recyclable sensors to detect solvent vapours with useful applications in industrial process risk management, chemical threat detection and environmental monitoring.

The researchers synthesised a series of complexes comprised of a bidentate ligand with 2-methylimidazolyl groups coordinated to copper(II) ions. The complexes stack to form channels in the crystal, capable of trapping solvent molecules to give different coloured crystals: DMSO and THF-containing crystals are green (λmax = 574 nm and 540 nm, respectively), those containing acetonitrile are red (λmax = 624 nm), and crystals trapping acetone, ether and pentane are yellow (λmax = 588), orange (λmax = 598 nm) and red/brown (λmax = 592 nm), respectively.

The authors revealed a correlation between the size of the solvent guest, coordination geometry of the copper complex, and the ligand field splitting. Small guests such as acetonitrile minimally perturb the metallocyclic framework, preserving a rhombic ligand field geometry (large δxy of g values in the EPR spectrum), small ligand d-orbital splitting and red-shifted optical spectra. Large guests such as THF have the opposite effect, giving ligand field geometries approaching tetragonal (small δxy), large ligand field d-orbital splitting and blue-shifted optical spectra.

By delving into the complexity beneath a seemingly simple phenomenon, Nikolayenko, Barbour and their co-workers have shown using a series of single-crystal complexes that there is nothing simple about colour (and nothing trite about detail).

To find out more please read:

Supramolecular solvatochromism: mechanistic insight from crystallography, spectroscopy, and theory

Varvara I. Nikolayenko, Lisa M. van Wyk, Orde Q. Munro, Leonard J. Barbour.
Chem. Commun., 2018, Advance Article
DOI: 10.1039/c8cc02197j

About the author

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

An Industrial Revolution on the Nanoscale

“What are the possibilities of small but movable machines? They may or may not be useful, but they surely would be fun to make”. In December 1959 Richard Feynman addressed the annual meeting of the American Physical Society at Caltech with a talk entitled ‘There’s Plenty of Room at the Bottom’, imploring the scientific community to start thinking small, like ‘entire 24 volumes of the Encyclopaedia Britannica on the head of a pin’ kind of small. Many quote this lecture as when the notion of nanomachines first entered the scientific sphere – with talk of miniature cars, injectable molecular ‘surgeons’ and machines that place atoms side by side to synthesize any molecule imaginable. The lecture reads like the description of the futuristic setting in ‘Back to the Future’, an exploration of possibilities at a time when we fundamentally lacked the tools to make them a reality.

As in ‘Back to the Future’, which predated yet predicted the emergence of mobile-banking technology, video calling and personal drones, Richard Feynman’s plea for scientists to prepare molecular-scale machines has also become a reality, and for their successes in this field Jean-Pierre Sauvage, Sir Fraser Stoddart and Ben Feringa were jointly awarded the Nobel Prize in Chemistry in 2016.

A group of researchers based in London and Singapore have written a feature article introducing both the foundational work in this field and state-of-the-art examples. Nanomachines are single molecules or molecular assemblies on the nanoscale (this review defines a 1 – 100 nm scope) that have the ability to perform ‘useful work’ upon application of an external energy source. To extract work (often in the form of controlled mechanical movement) molecular machines are designed to operate at a thermodynamically far-from-equilibrium state, maintained by an energy input, with movement occurring as the system relaxes towards equilibrium. At the synthetic level, molecules are designed with components which have restricted translational and rotational movements with respect to each other, and the ability to control these movements is key to obtaining the desired function.

A catalytically active rotaxane synthesised by Nolte and co-workers acts as a tiny epoxidising machine , moving along a polybutadiene polymer

The catalytically active rotaxane synthesised by Nolte and co-workers acts as a tiny epoxidising machine, moving along a polybutadiene polymer

One of the first advances towards the synthesis of nanomachines was by the research group of Jean-Pierre Sauvage, who achieved the templated synthesis of catenanes; structures with two circular molecules that are interlocked like two links in a chain. It was subsequently shown that a catenane motor could be prepared, with one ring rotating with respect to the other in a controlled manner. Fraser Stoddart further contributed to the field with ‘rotaxanes’, composite molecules comprising a ring threaded onto an axle. Nanomachines based on rotaxanes have been developed and include switches, shuttles and ‘molecular elevators’. A state-of-the-art example of a catalytically active rotaxane synthesised by Nolte and co-workers in 2003 demonstrates the potential of nanomachines to revolutionise organic synthesis. The rotaxane is constructed with a magnesium-bound porphyrin, which threads onto a polybutadiene polymer (300 kDa, 98% cis) and catalyses the epoxidation of the double bonds (turnover number: 140, cis/trans ratio of the polyepoxide: 1:4).

Ben Feringa's electric nano-car, a single molecule with four fluorene 'wheels' capable of driving across a copper surface

Ben Feringa’s electric nano-car, a single molecule with four fluorene ‘wheels’ capable of driving across a copper surface

In 2011 Ben Feringa and co-workers synthesized the worlds tiniest electric car using the same design principles they had used to create a spinning motor in 1999. The car is a single molecule with the ability to propel itself across a crystalline copper surface upon activation by a voltage pulse, with 10 pulses moving the car 6 nm across the surface. The car itself is comprised of a central diyne strut bonded at each end to carbazole ‘axles’. Each axle is bound through alkenes to two fluorene ‘wheels’. The key design elements are the alkenes and two chiral methyl substituents on each axle which forces each wheel to twist out of the plane. For one wheel rotation: an electronic excitation induces transcis isomerisation of the alkene causing a quarter turn of the wheel such that it sits adjacent to the methyl group. Next, a vibrational excitation induces helical inversion, allowing the wheel to push past the methyl group another quarter turn. Another isomerisation and helical inversion completes a full rotation. Research achievements like these demonstrate mechanical work on the nanoscale, with the vision of achieving movement on the macroscale via synchronised motion.

These examples represent a small subset of those discussed in the feature article review, which not only spans the current scope of molecular-scale machines, but reviews the design principles guiding their development and the possibilities nanomachines represent in the future of scientific research.

To find out more please read: 

Artificial molecular and nanostructures for advanced nanomachinery

Elizabeth Ellis, Suresh Moorthy, Weng-I Katherine Chio and Tung-Chun Lee.
Chem. Commun., 2018, Advance Article
DOI: 10.1039/c7cc09133h

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the 2018 Cram Lehn Pedersen Prize winner: Rafal Klajn

We are proud to announce that Dr. Rafal Klajn, at the Weizmann Institute of Science in Israel, as the recipient of this year’s Cram Lehn Pedersen Prize in Supramolecular Chemistry! This prize, sponsored by ChemComm, is named in honour of the winners of the 1987 Nobel Prize in Chemistry and recognises significant original and independent work in supramolecular chemistry. Our warmest congratulations to Rafal, a well-deserved winner!

 

Dr. Rafal Klajn

Rafal is an Associate Professor at the Weizmann Institute of Science and will receive the award during the 2018 International Symposium on Macrocyclic and Supramolecular Chemistry (ISMSC).

This annual conference consists of sessions of invited lectures that focus upon a single topic area, award lectures and poster sessions. This year, the conference will also feature evening sessions on supramolecular chemistry with keynote speakers as well as an exciting series of Nobel Lectures on the final day!

Find out more and register here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Cram Lehn Pedersen Prize 2017 – call for nominations

ISMSC-ISACS 2017, 2-6 July 2017, Cambridge, UK

The International Committee of the International Symposium on Macrocyclic and Supramolecular Chemistry is pleased to invite nominations for the Cram Lehn Pedersen Prize for young supramolecular chemists.

The Cram Lehn Pedersen Prize, named in honour of the winners of the 1987 Nobel Prize in Chemistry, recognises significant original and independent work in supramolecular chemistry.

Previous winners include Ivan Aprahamian, Feihe Huang, Oren Schermann, Tomoki Ogoshi, Jonathan Nitschke, and Amar Flood.

Those who are within 10 years of receiving their PhD on 31st December 2016 are eligible for the 2017 award. The winner will receive a prize of £2000 and free registration for the ISMSC-ISACS meeting in Cambridge, UK. In addition to giving a lecture at ISMSC-ISACS, a short lecture tour will be organised after the meeting in consultation with the Editor of Chemical Communications, the sponsor of the award.

Nomination Details:

You may nominate yourself or someone else. Please send your CV, list of publications (divided into publications from your PhD and post-doc, and those from your independent work), and if desired, a letter of support, or these materials for someone you wish to nominate, to Prof. Roger Harrison (ISMSC Secretary) at rgharris@chem.byu.edu by 31st December 2016.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Ivan Aprahamian wins Cram Lehn Pedersen Prize

Photograph of Professor Ivan AprahamianThe International Committee of the International Symposium on Macrocyclic and Supramolecular Chemistry is delighted to announce that the 2016 Cram Lehn Pedersen Prize, given annually to an outstanding early-career supramolecular chemist, has been awarded to Professor Ivan Aprahamian, Dartmouth College, USA for his exciting research on molecular switches – congratulations!

As part of the Prize, Prof. Aprahamian will give a lecture at the 11th International Symposium on Macrocyclic and Supramolecular Chemistry meeting in Seoul, Korea which takes place from 10–14 July 2016.

Photograph of Dr Jeanne AndresDr Jeanne Andres (Deputy Editor of ChemComm) will be attending the event and will present the award in person. She would love to hear about your research and meet with our readers, authors and referees. Please do get in touch with Jeanne if you would like to arrange a meeting in advance.

We are also delighted to announce that the International Symposium on Macrocyclic and Supramolecular Chemistry in 2017 will be held in conjuction with ISACS: Challenges in Organic Materials & Supramolecular Chemistry.

Our keynote speakers will be:

  • François Diederich (ETH Zurich, Switzerland)
  • David Leigh (The University of Manchester, UK)
  • Jeffrey Long (University of California, Berkeley, USA)
  • Vivian Yam (University of Hong Kong, Hong Kong)
  • Xi Zhang (Tsinghua University, China)

Full details of all the confirmed speakers may be found on the event website.

We hope you can join us in Cambridge, UK – save the dates 2–6 July 2017!

While you are waiting you might like to check out some of our recent themed collections of articles in the area of supramolecular chemistry – Enjoy!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nominate now for the 2016 Cram Lehn Pedersen Prize in Supramolecular Chemistry

The International Committee of the International Symposium on Macrocyclic and Supramolecular Chemistry is pleased to invite nominations for the Cram Lehn Pedersen Prize for young supramolecular chemists.

The Cram Lehn Pedersen Prize, named in honour of the winners of the 1987 Nobel Prize in Chemistry, recognises significant original and independent work in supramolecular chemistry.

Previous winners include Feihe Huang, Oren Schermann, Tomoki Ogoshi, Jonathan Nitschke, and Amar Flood.

Those who are within 10 years of receiving their PhD on 31st December 2015 are eligible for the 2016 award. The winner will receive a prize of £2000 and free registration for the ISMSC meeting in Seoul, Korea. In addition to giving a lecture at ISMSC, a short lecture tour will be organised after the meeting in consultation with the Editor of Chemical Communications, the sponsor of the award.

Nomination Details:

You may nominate yourself or someone else. Please send your CV, list of publications (divided into publications from your PhD and post-doc, and those from your independent work), and if desired, a letter of support, or these materials for someone you wish to nominate, to Prof. Roger Harrison (ISMSC Secretary) at rgharris@chem.byu.edu by 31st January 2016.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Feihe Huang wins Cram Lehn Pedersen Prize 2015

Congratulations to Prof Feihe Huang from the State Key Laboratory of Chemical Engineering at Zhejiang University, China, winner of the 2014 Cram Lehn Pedersen Prize in Supramolecular Chemistry.

The prize, sponsored by ChemComm, is organised by the committee of the International Symposium on Macrocyclic and Supramolecular Chemistry and is awarded each year to a young supramolecular chemist.

The Cram Lehn Pedersen Prize is named in honour of the winners of the 1987 Nobel Prize in Chemistry and recognises significant original and independent work in supramolecular chemistry. Previous winners include Oren Schermann, Tomoki Ogoshi, and Jonathan Nitschke.

Feihe will receive £2000, free registration for the ISMSC meeting in Strasbourg, France, and the opportunity to give a lecture at the ISMSC. He is also giving two additional lectures as part of his prize in Germany, at the Max Planck Institute of Colloids and Interfaces and the Free University of Berlin.

Dr May Copsey, Executive Editor of the journal, will be also attending this conference to personally award Feihe with the lectureship. She hopes to meet many ChemComm readers and authors there. Please do let her know if you will be there too!

“Professor Feihe Huang follows in the tradition of other winners and is an excellent supramolecular scientist. He has published over 100 articles as an independent researcher, in top tear journals such as ChemComm,” says Professor Roger Harrison, Associate Professor at Brigham Young University and Secretary of the ISMSC International Scientific Committee.  He adds, “He has set himself apart from other chemists by investigating supramolecular polymers and learning how to control their properties.”


Find out more about Feihe Huang by reading his recent research in ChemComm:

Prof Feihe Huang, Winner of the Cram Lehn Pedersen Prize 2015

A water-soluble biphen[3]arene: synthesis, host–guest complexation, and application in controllable self-assembly and controlled release
Jiong Zhou, Guocan Yu, Li Shao, Bin Hua and Feihe Huang
Chem. Commun., 2015, 51, 4188-4191
DOI: 10.1039/C5CC00225G, Communication

Reversible formation of a poly[3]rotaxane based on photo dimerization of an anthracene-capped [3]rotaxane
Peifa Wei, Xuzhou Yan and Feihe Huang
Chem. Commun., 2014, 50, 14105-14108
DOI: 10.1039/C4CC07044E, Communication

A CO2-responsive pillar[5]arene: synthesis and self-assembly in water
Kecheng Jie, Yong Yao, Xiaodong Chi and Feihe Huang
Chem. Commun., 2014, 50, 5503-5505
DOI: 10.1039/C4CC01704H, Communication

Host–guest complexation induced emission: a pillar[6]arene-based complex with intense fluorescence in dilute solution
Pi Wang, Xuzhou Yan and Feihe Huang
Chem. Commun., 2014, 50, 5017-5019
DOI: 10.1039/C4CC01560F, Communication

We invite you to submit your next communication article to ChemComm!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)