Journal lectureships 2017 – nominations open!

Know an outstanding emerging scientist who deserves recognition? Nominate now for the 2017 ChemComm and Chem Soc RevEmerging Investigator Lectureships

We are pleased to welcome nominations for the 2017 Emerging Investigator Lectureships for ChemComm and Chem Soc Rev.

All nominations must be received by Monday, 30 January 2017.

Nominations are open for these journal lectureships – only one entry needed per nominee, as each nomination will be considered for both competitions as appropriate.

ChemComm Emerging Investigator Lectureship
• Recognises emerging scientists in the early stages of their independent academic career
• Eligible nominees should have completed their PhD on or after the 15th September 2008, and should also have published as least one article in ChemComm during the course of their independent career

Chem Soc Rev Emerging Investigator Lectureship
• Recognises emerging scientists who have made significant contributions to their research field
• Eligible nominees should have completed their PhD on or after the 15th September 2008

Lectureship details
• Recipients of these lectureships will each be invited to present a lecture at three different locations over a 12-month period, with at least one of these events taking place at an international conference.
• Each recipient will receive a contribution of £1500 towards travel and accommodation costs for their lectures, as well as a certificate.
• Recipients will be asked to contribute a review article for the specific journal awarding their lectureship.

How to nominate
Self-nomination is not permitted. Nominators must send the following to the editorial team via chemcomm-rsc@rsc.org OR chemsocrev-rsc@rsc.org by Monday, 30 January 2017. Each nomination will be considered for both lectureships.
• Recommendation letter, including the name, contact details and website URL of the nominee.
• A one-page CV for the nominee, including their date of birth, summary of education, career and key achievements, a list of up to five of their top independent publications, total numbers of publications and patents, and other indicators of esteem, together with evidence of career independence.
• A copy of the candidate’s best publication to date (as judged by the nominator).
• Two supporting letters of recommendation from two independent referees. These should not be someone from the same institution or the candidate’s post doc or PhD supervisor.

The nominator and independent referees should comment on the candidate’s presenting skills.

Incomplete nominations or those not adhering to the above requirements will not be considered, and nominees will not be contacted regarding any missing or incorrect documents.

Selection procedure
• The editorial team will screen each nomination for eligibility and draw up a shortlist of candidates based on the nomination documents provided.
• Shortlisted candidates will be asked to provide a brief supporting statement summarising their key achievements, highlighting the impact of their work and justifying why they deserve the specific lectureship for which they have been entered.
• Recipients of each lectureship will then be selected and endorsed by a selection panel composed of members of each journal’s Editorial Board. Winners of the lectureships will be announced in the first half of 2017.

NB: Please note that members of the selection panel from the ChemComm and Chem Soc Rev Editorial Boards are not eligible to nominate, or provide references, for these lectureships.

For any queries, please contact the editorial team at chemcomm-rsc@rsc.org or chemsocrev-rsc@rsc.org.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Ang Li: Winner of the 2016 ChemComm Emerging Investigator Lectureship

On behalf of the ChemComm Editorial Board, we are delighted to announce Ang Li (organic synthesis and natural products), Shanghai Institute of Organic Chemistry, China, as the winner of the 2016 ChemComm Emerging Investigator Lectureship. Congratulations, Ang!

Ang Li

Ang Li

Ang will commence his Lectureship tour at the upcoming International Conference on New Challenges in Organic Synthesis to be held in Guangzhou, China from 27-28 November 2016. This will be followed by a presentation at the 21st International Conference on Organic Synthesis (ICOS 21) at the IIT Bombay, Mumbai, India on 11-16 December 2016. His tour will culminate at the Royal Society of Chemistry’s 25th International Symposium: Synthesis in Organic Chemistry to be held at the University of Oxford, UK from 17-20 July 2017, during which he will be awarded with his official Lectureship certificate.

This annual lectureship recognises an emerging scientist in the early stages of their independent academic career. For information on previous winners see our website.

We are pleased to welcome nominations for the 2017 Emerging Investigator Lectureships for ChemComm and for Chem Soc Revnominate now!

Also of interest: You can now read the 2016 ChemComm Emerging Investigators Issue which highlights research from outstanding up-and-coming scientists. This year’s issue includes a selection of Feature articles and Communications, as well as a Profile of this year’s contributors, with interesting photos to spotlight our authors at work or at play – look out for a cool plasma ball, white-water rafting, a cute canine friend, and loads of lovely shots in the great outdoors!

You can also take a look at our previous Emerging Investigator issues in 2011, 2012, 2013, 2014 and 2015.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Cram Lehn Pedersen Prize 2017 – call for nominations

ISMSC-ISACS 2017, 2-6 July 2017, Cambridge, UK

The International Committee of the International Symposium on Macrocyclic and Supramolecular Chemistry is pleased to invite nominations for the Cram Lehn Pedersen Prize for young supramolecular chemists.

The Cram Lehn Pedersen Prize, named in honour of the winners of the 1987 Nobel Prize in Chemistry, recognises significant original and independent work in supramolecular chemistry.

Previous winners include Ivan Aprahamian, Feihe Huang, Oren Schermann, Tomoki Ogoshi, Jonathan Nitschke, and Amar Flood.

Those who are within 10 years of receiving their PhD on 31st December 2016 are eligible for the 2017 award. The winner will receive a prize of £2000 and free registration for the ISMSC-ISACS meeting in Cambridge, UK. In addition to giving a lecture at ISMSC-ISACS, a short lecture tour will be organised after the meeting in consultation with the Editor of Chemical Communications, the sponsor of the award.

Nomination Details:

You may nominate yourself or someone else. Please send your CV, list of publications (divided into publications from your PhD and post-doc, and those from your independent work), and if desired, a letter of support, or these materials for someone you wish to nominate, to Prof. Roger Harrison (ISMSC Secretary) at rgharris@chem.byu.edu by 31st December 2016.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the Poster Prize winners at The 20th Symposium of the Society of Silicon Chemistry

The Royal Society of Chemistry were delighted to sponsor Chemical Communications Poster Prizes at The 20th Symposium of the Society of Silicon Chemistry. This event was held from 7th – 8th October 2016 in Hiroshima, Japan and hosted by The Society of Silicon Chemistry Japan.

We would like to take the time to congratulate our prize winners!

Ms Mirei Motomatsu from Gakushuin University‘s poster was titled “Reaction of a cationic metallogermylene with nitrogen containing compounds“.

Mr Tomohiro Sugahara from Kyoto University‘s poster was titled “Synthesis and structure of cyclic compounds containing germanium atoms utilizing a digermacyclobutene derivative“.

Dr Hiromitsu Urakami, RSC Manager for Japan, awarded the winners with their certificates.

Ms Mirei Motomatsu with Dr Hiromitsu Urakami

Mr Tomohiro Sugahara with Dr Hiromitsu Urakami

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 Reviewers for ChemComm

Many thanks to our reviewers and community

In celebration of Peer Review Week, with the theme of Recognition for Review, we would like to highlight the top 10 reviewers for ChemComm in 2016, as selected by the editor for their significant contribution to the journal.

Top 10 Reviewers for ChemComm:
– Dr Xuehai Yan – Max-Planck Institute of Colloids and Interfaces, Germany
– Dr Yong Wang – Dalton Cardiovascular Research Center, USA
– Dr Cheng Wang – Xiamen University, China
– Dr Tieru Zhang – Technical Institute of Physics and Chemistry, China
– Dr Jie Wu – National University of Singapore, Singapore
– Dr Guocan Yu – Zhejiang University, China
– Dr Xiangbing Qi – National Institute of Biological Science Beijing, China
– Dr Yong Li – University of Missouri-Kansas City, USA
– Dr Youjun Yang – East China University of Science and Technology, China
– Professor Martin Albrecht – University of Bern, Switzerland

We would like to say a massive thank you to these reviewers as well as the ChemComm board and all of the chemistry community for their continued support of the journal, as authors, reviewers and readers.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

3D graphene adds dimension to deaf–mute communication

Written by Chris Barnard for Chemistry World

Graphical AbstractScientists in China have printed conductive 3D graphene structures and applied them in a wearable electronic device that can translate common sign language gestures into written text. Given the simplicity underpinning its manufacture, during which graphene ink is extruded from a syringe, this material could inject some pace into the printed electronics field.

Wearable and bio-integrated devices are mainstays in medical technology, ranging from adhesive patches that measure heart and respiratory rate to brain–computer interfaces that induce neural activity. Its remarkable mechanical and electrical properties cast graphene, a 2D honeycomb lattice of carbon atoms, as a key future player in the wearable technology arena. However, it is a challenge to preserve the advantages of graphene’s sheet-like nanostructure in a 3D material that – unlike typical 2D materials – can relay information about forces from every angle.

Read the full article in Chemistry World >>>


Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing
Boxing An, Ying Ma, Wenbo Li, Meng Su, Fengyu Li and Yanlin Song
Chem. Commun., 2016, 52, 10948-10951
DOI: 10.1039/C6CC05910D, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Professor Itaru Hamachi joins as Associate Editor

A warm welcome to Professor Itaru Hamachi

We are very pleased to welcome Professor Itaru Hamachi from Kyoto University as a new Associate Editor to the ChemComm team and look forward to working with him over the coming years.

Itaru is a chemical biologist with expertise in live-cell organic chemistry, chemical biology, bioorganic and bioinorganic chemistry, and supramolecular biomaterials. He is now accepting submissions to ChemComm in the area of chemical biology.

Itaru is looking froward to his new role:

I would like to encourage that new chemistry and chemical approaches between the chemistry and biology interfaces will appear in ChemComm, in order to decipher a lot of chemical-biology problems and also to create novel bio-inspired materials.

About Itaru:

Professor Itaru Hamachi was born in Fukuoka Prefecture, Japan in 1960 and received his Ph.D. in 1988 from Kyoto University under the guidance of the late Professor Iwao Tabushi. Immediately thereafter he joined Kyushu University, where he worked as an Assistant Professor for three years in the Kunitake laboratory before he became an Associate Professor in the Shinkai laboratory in 1992. In 2001, he became a Full Professor at IFOC, Kyushu University and moved to Kyoto University in 2005 where he currently heads the bioorganic chemistry wing.

Professor Hamachi has been a PRESTO investigator for 7 years (from 2000 to 2006) and a team leader of two CREST projects (from 2008 to 2013 and then from 2013 to 2018), which all are supported by the Japan Science and Technology (JST) Agency.

Submit your next top-notch, high-impact research now to Itaru Hamachi’s Editorial Office.



Itaru’s recent articles in ChemComm and other Royal Society of Chemistry journals include:*

Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells
Ryou Kubota and Itaru Hamachi
Chem. Soc. Rev., 2015, 44, 4454-4471
DOI: 10.1039/C4CS00381K, Review Article

Ligand-directed dibromophenyl benzoate chemistry for rapid and selective acylation of intracellular natural proteins
Yousuke Takaoka, Yuki Nishikawa, Yuki Hashimoto, Kenta Sasaki and Itaru Hamachi
Chem. Sci., 2015, 6, 3217-3224
DOI: 10.1039/C5SC00190K, Edge Article
OA iconOpen Access

Hoechst tagging: a modular strategy to design synthetic fluorescent probes for live-cell nucleus imaging
Akinobu Nakamura, Kazumasa Takigawa, Yasutaka Kurishita, Keiko Kuwata, Manabu Ishida, Yasushi Shimoda, Itaru Hamachi and Shinya Tsukiji
Chem. Commun., 2014, 50, 6149-6152
DOI: 10.1039/C4CC01753F, Communication

*Access is free until 30/09/2016 through a registered RSC account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Molecular beacon homes in on protein structures

Written by Aurora Walshe for Chemistry World

Graphical AbstractTwo separate groups of scientists have developed methods to uncover proteins’ 3D structure inside living animal cells for the first time.

It is vital to know the structure of a protein to understand its chemical and biological functions. Scientists usually need to purify and crystallise a protein to determine its 3D structure by x-ray crystallography. Not only is this process difficult and lengthy, it can also misrepresent the protein’s structure, as the measuring conditions are vastly different from the conditions inside a living cell.

Now, a researcher team led by Xun-Cheng Su from Nankai University in Tianjin, China,Conggang Li at Chinese Academy of Sciences, and Thomas Huber from the Australian National University, has analysed a protein’s structure using nuclear magnetic resonance (NMR) spectroscopy inside living frog cells.1 The researchers tagged the protein with a beacon, a paramagnetic lanthanide tag, which binds to a cysteine residue on the outside of the protein. ‘The measured effects from the beacons tagged onto the protein give away the positions of the atoms in the protein, in a similar way that a set of satellites can be used to locate the exact position of a GPS receiver,’ Su explains.

Read the full article on Chemistry World >>>


Bin-Bin Pan, Feng Yang, Yansheng Ye, Qiong Wu, Conggang Li, Thomas Huber and Xun-Cheng Su
Chem. Commun., 2016, 52, 10237-10240
DOI: 10.1039/C6CC05490K, Communication
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Transition metal material captures inert neon

Written by Charles Quigg for Chemistry World

Graphical AbstractA team of scientists has discovered the first interactions between neon and a transition metal. Their discovery opens up the possibility of new methods to capture the inert gas, as well as other unreactive elements such as helium.

Although it’s found in advertising and eye-catching signage, neon is also incorporated into lasers used in the photolithographic printing of semiconductors. Neon is abundant in the universe, but its inert nature means that it escapes the Earth’s atmosphere. The noble gas is also hard to isolate. Current methods involve liquefying air and distilling the gas in a liquid form – an expensive and inefficient approach.

A team led by Peter Wood at the Cambridge Crystallographic Data Centre, UK, has discovered that, under particular conditions, the inert gas interacts with a transition metal. Not only is this the first interaction ever observed, but it may kick-start new approaches in capturing unreactive noble gases.

Read the full article in Chemistry World >>>


Peter A. Wood, Amy A. Sarjeant, Andrey A. Yakovenko, Suzanna C. Ward and Colin R. Groom
Chem. Commun., 2016, 52, 10048-10051
DOI: 10.1039/C6CC04808K, Communication
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Amine behind mask hides its reactivity

Written by Andrea McGhee for Chemistry World

Graphical AbstractChemists mask amines’ unwanted reactivity with carbon dioxide and overcome limitations of amide formation

Chemists at Imperial College London, UK, have overcome limitations that afflict a specific class of amidation reactions, used to produce a range of compounds from drugs to valuable materials. Their simple trick was to add carbon dioxide, which masks the reagent’s reactivity, making sure it only reacts when they want it to.

Read the full article in Chemistry World >>>


Robert W. M. Davidson and Matthew J. Fuchter
Chem. Commun., 2016, Advance Article
DOI: 10.1039/C6CC04639H, Communication
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)