Synthesis of Oxazolines with a Triple Activation Twist

A group of researchers based in Valencia, Spain, have developed an enantio- and diastereoselective method to synthesize oxazolines, using a combination of silver and an organocatalyst that is only one degree of separation away from a classic British cocktail (to get that one, you might have to keep reading). This method complements the current literature by employing unactivated ketone substrates to prepare products with two adjacent chiral centres, one of which is quaternary.

Oxazolines are a versatile functional group, found in synthetic precursors and functional molecules and materials. They are a common structural feature in many natural products and in medicinal chemistry they are incorporated into synthetic drug candidates as bioisosteres of other functional groups, such as thiazoles and imidazoles. Oxazolines can also be used to prepare poly(2-alkyl/aryl-oxazoline) polymers, which have utility in biomedical fields to prepare hydrogels, nanoparticles for drug delivery and imaging, and polymer-protein conjugates. In an organic synthesis laboratory oxazolines are encountered as ligands in asymmetric catalysis, such as the bis(oxazoline) ‘BOX’ family of compounds.

Synthesis of oxazolines from ketones and isocyanaoacetate esters via a formal [3+2] cycloaddition reaction catalysed by a multicatalytic system of silver and a dihydroquinine squaramide organocatalyst

Synthesis of oxazolines from ketones and isocyanaoacetate esters via a formal [3+2] cycloaddition reaction.

The researchers optimised the reaction with acetophenone and tert-butyl isocyanoacetate, and found that Ag2O (2.5 mol%) and a dihydroquinine squaramide organocatalyst (5 mol%) promoted the reaction to obtain a quantitative yield of the cis-oxazoline (80:20 cis/trans) in 24 hours with excellent enantiomeric excess (99/93% e.e.). The researchers tested the reaction scope and found that acetophenone derivatives substituted with electron-withdrawing and donating groups (NO2, Cl, Br, Me) gave the cis-oxazoline products in reliable yields (60 – 99%), fair to good diastereoselectivity (56:44 – 95:5 cis/trans) and excellent enantioselectivities (91 – 99% e.e.). Other examples tested included cyclohexanone, 2-acetylthiophene, deoxybenzoin and acetone as well as aliphatic ketones with a combination of methyl, isopropyl and cyclopropyl groups (63-99% yield, 45:55 – 98:2 cis/trans, 56 – 98% e.e.).

Diagram showing the triple activation of the substrates achieved using a dihydroquinone squaramide organocatalyst combined with a silver lewis acid.

Diagram showing the triple activation of substrates using a dihydroquinine squaramide organocatalyst combined with a silver lewis acid.

The dihydroquinine squaramide organocatalyst used is a composite structure comprising a rigid cyclobutendione ‘squaramide’ and a reduced quinine analogue. The former makes strong hydrogen bonds with carbonyl derivatives while the latter confers chirality on the catalyst and has a Brønsted basic quinuclidine moiety. Quinine is an alkaloid isolated from the cinchona plant, and is the same stuff in anti-malarial tonic that is better washed down with a measure of gin. The reaction proceeds via silver-coordination to the terminal carbon of the isocyanate, accelerating deprotonation of the alpha protons by the quinuclidine base and forming a nucleophilic enoate. The electrophilicity of the ketone is enhanced by the formation of two hydrogen bonds with the N-H bonds of the squaramide, shaping a doubly activated system which rapidly undergoes a formal [3+2] cycloaddition to give the products.

At first glance this seems to be a simple and straightforward transformation, but in reality the authors have succeeded in optimising a reaction for unactivated substrates which has stereocontrol over two chiral centres, one of which is quaternary. Furthermore, the reaction uses a combination of two catalysts reacting via three modes of activation.

To find out more please read:

Enantioselective synthesis of chiral oxazolines from unactivated ketones and isocyanoacetate esters by synergistic silver/organocatalysis

Pablo Martínez-Pardo, Gonzalo Blay, M. Carmen Muñoz, José R. Pedro, Amparo Sanz-Marco and Carlos Vila.
Chem. Commun., 2018, 54, 2862 – 2865
DOI: 10.1039/c8cc00856f

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

An Industrial Revolution on the Nanoscale

“What are the possibilities of small but movable machines? They may or may not be useful, but they surely would be fun to make”. In December 1959 Richard Feynman addressed the annual meeting of the American Physical Society at Caltech with a talk entitled ‘There’s Plenty of Room at the Bottom’, imploring the scientific community to start thinking small, like ‘entire 24 volumes of the Encyclopaedia Britannica on the head of a pin’ kind of small. Many quote this lecture as when the notion of nanomachines first entered the scientific sphere – with talk of miniature cars, injectable molecular ‘surgeons’ and machines that place atoms side by side to synthesize any molecule imaginable. The lecture reads like the description of the futuristic setting in ‘Back to the Future’, an exploration of possibilities at a time when we fundamentally lacked the tools to make them a reality.

As in ‘Back to the Future’, which predated yet predicted the emergence of mobile-banking technology, video calling and personal drones, Richard Feynman’s plea for scientists to prepare molecular-scale machines has also become a reality, and for their successes in this field Jean-Pierre Sauvage, Sir Fraser Stoddart and Ben Feringa were jointly awarded the Nobel Prize in Chemistry in 2016.

A group of researchers based in London and Singapore have written a feature article introducing both the foundational work in this field and state-of-the-art examples. Nanomachines are single molecules or molecular assemblies on the nanoscale (this review defines a 1 – 100 nm scope) that have the ability to perform ‘useful work’ upon application of an external energy source. To extract work (often in the form of controlled mechanical movement) molecular machines are designed to operate at a thermodynamically far-from-equilibrium state, maintained by an energy input, with movement occurring as the system relaxes towards equilibrium. At the synthetic level, molecules are designed with components which have restricted translational and rotational movements with respect to each other, and the ability to control these movements is key to obtaining the desired function.

A catalytically active rotaxane synthesised by Nolte and co-workers acts as a tiny epoxidising machine , moving along a polybutadiene polymer

The catalytically active rotaxane synthesised by Nolte and co-workers acts as a tiny epoxidising machine, moving along a polybutadiene polymer

One of the first advances towards the synthesis of nanomachines was by the research group of Jean-Pierre Sauvage, who achieved the templated synthesis of catenanes; structures with two circular molecules that are interlocked like two links in a chain. It was subsequently shown that a catenane motor could be prepared, with one ring rotating with respect to the other in a controlled manner. Fraser Stoddart further contributed to the field with ‘rotaxanes’, composite molecules comprising a ring threaded onto an axle. Nanomachines based on rotaxanes have been developed and include switches, shuttles and ‘molecular elevators’. A state-of-the-art example of a catalytically active rotaxane synthesised by Nolte and co-workers in 2003 demonstrates the potential of nanomachines to revolutionise organic synthesis. The rotaxane is constructed with a magnesium-bound porphyrin, which threads onto a polybutadiene polymer (300 kDa, 98% cis) and catalyses the epoxidation of the double bonds (turnover number: 140, cis/trans ratio of the polyepoxide: 1:4).

Ben Feringa's electric nano-car, a single molecule with four fluorene 'wheels' capable of driving across a copper surface

Ben Feringa’s electric nano-car, a single molecule with four fluorene ‘wheels’ capable of driving across a copper surface

In 2011 Ben Feringa and co-workers synthesized the worlds tiniest electric car using the same design principles they had used to create a spinning motor in 1999. The car is a single molecule with the ability to propel itself across a crystalline copper surface upon activation by a voltage pulse, with 10 pulses moving the car 6 nm across the surface. The car itself is comprised of a central diyne strut bonded at each end to carbazole ‘axles’. Each axle is bound through alkenes to two fluorene ‘wheels’. The key design elements are the alkenes and two chiral methyl substituents on each axle which forces each wheel to twist out of the plane. For one wheel rotation: an electronic excitation induces transcis isomerisation of the alkene causing a quarter turn of the wheel such that it sits adjacent to the methyl group. Next, a vibrational excitation induces helical inversion, allowing the wheel to push past the methyl group another quarter turn. Another isomerisation and helical inversion completes a full rotation. Research achievements like these demonstrate mechanical work on the nanoscale, with the vision of achieving movement on the macroscale via synchronised motion.

These examples represent a small subset of those discussed in the feature article review, which not only spans the current scope of molecular-scale machines, but reviews the design principles guiding their development and the possibilities nanomachines represent in the future of scientific research.

To find out more please read: 

Artificial molecular and nanostructures for advanced nanomachinery

Elizabeth Ellis, Suresh Moorthy, Weng-I Katherine Chio and Tung-Chun Lee.
Chem. Commun., 2018, Advance Article
DOI: 10.1039/c7cc09133h

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Buckyball’s Hydrogen Spillover Effect at Ambient Temperature Observed Experimentally for the First Time

A group of scientists from Tohoku University, Japan experimentally demonstrated the hydrogen spillover effect of buckyball (a.k.a. fullerene or C60). They achieved this breakthrough using mass spectroscopy, and their findings were published recently in Chem. Commun.

Certain transition metal nanoparticles (e.g. Ru, Pt and Ni) can capture hydrogen molecules. The capture process generally involves three sequential steps. Firstly, hydrogen molecules split into hydrogen atoms on the metal surface. Secondly, the yielded hydrogen atoms migrate on the surface towards substrates under the metal nanoparticles and, finally, these atoms fix onto the substrates. The second step is termed the “spillover effect” (Figure 1a). Previous studies predicted that curved graphene sheets could enhance the hydrogen spillover effect at ambient temperatures, but solid experimental evidence has remained inadequate.

To gather evidence for this prediction, Nishihara et al. studied the material buckyball, a spherical carbon nanosphere that represents an extremely curved graphene sheet. The researchers selected ketjenblack (KB), a type of porous carbon sheet, as the substrate, and deposited Pt nanoparticles (1-3 nm in diameter) and buckyball molecules onto it (Figure 1b). They found that the Pt and buckyball-decorated KB stored a higher amount of hydrogen compared to the Pt-loaded KB. This observation indirectly confirmed the previous prediction, as hydrogen storage capacity may be improved by enhancing the spillover effect.

Figure 1. (a) A schematic illustration showing how a hydrogen molecule is split on Pt surface [process (1)] followed by the spillover effect [processes (2) and (2′)]. (b) A schematic illustration of the structure of Pt and buckyball-decorated KB. The inset panel displays two forms of hydrogen bound to the composite: the physically adsorbed di-hydrogen molecules, and the spillover hydrogen atoms anchored on the KB substrate and buckyballs.

 

The authors then sought time-of-flight mass spectroscopy to obtain more evidence. This spectroscopic technique is capable of identifying molecules with different mass to charge ratios (m/z). As shown in Figure 2, after treating the buckyball and Pt-loaded KB with deuterium molecules (D2), the spectrum (red) exhibited two additional peaks with m/z of ~723.5 and ~724.5 (highlighted by arrows in the figure) compared to those of the buckyball reference (black) and the buckyball and Pt-loaded KB prior to D2 dosage (blue). The authors ascribed these two new peaks to single D atom-adsorbed buckyballs with different amounts of carbon isotopes (12C and 13C). The presence of the two new peaks clearly showed that buckyballs could host hydrogen atoms to enhance the spillover effect. In addition, upon exposing the D-containing buckballs to air, both of the newly-merged peaks disappeared, suggesting that D atom adsorption was reversible.

Figure 2. The time-of-flight mass spectroscopy spectra of buckyball (black), Pt and buckyball-decorated KB before (blue) and after (red) exposure to D2, and after exposure to air (green). Pictures on the right show the molecular structure of a buckyball molecule and two deuterium-incorporated buckyball molecules (with different number of 13C isotope). Deuterium is used to avoid the interference from the 13C isotope.

This work could serve as a reference for future studies of the spillover effect induced by buckyballs interacting with other metal nanoparticles. The increasing availability of in-depth fundamental insight could refine our understanding of ambient-temperature hydrogen storage.

To find out more please read:

Enhanced Hydrogen Spillover to Fullerene at Ambient Temperature

Hirotomo Nishihara, Tomoya Simura and Takashi Kyotani

Chem. Commun. 2018, DOI: 10.1039/c8cc00265g

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Chemical Communications in 2017

We would like to highlight the Outstanding Reviewers for Chemical Communications in 2017, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Professor Koji Hirano, Osaka University, ORCID: 0000-0001-9752-1985
Professor Marcel Hollenstein, Institut Pasteur, ORCID: 0000-0003-0263-9206
Professor Yu Sherry Jiang, Harvard Medical School
Professor Joohoon Kim, Kyung Hee University, ORCID: 0000-0003-1481-2440
Dr Matthew Lloyd, University of Bath, ORCID: 0000-0002-4821-4361
Professor Arpad Molnar, University of Szeged, ORCID: 0000-0001-9191-450X
Professor David Nelson, University of Strathclyde, ORCID: 0000-0002-9461-5182
Professor Kyungsoo Oh, Chung-Ang University, ORCID: 0000-0002-4566-6573
Professor Carlos del Pozo, University of Valencia, ORCID: 0000-0002-0947-5999
Professor Jin Xie, Nanjing University, ORCID: 0000-0003-2600-6139

We would also like to thank the Chemical Communications Board and the general chemical sciences community for their continued support of the journal, as authors, reviewers and readers.

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé.  You can find more details in our author and reviewer resource centre.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

22nd International Symposium on Fluorine Chemistry

We proud to announce that ChemComm will be sponsoring the 22nd International Symposium on Fluorine Chemistry (22nd ISFC), which will take place on the 22nd – 27th July 2018, in Oxford, UK. We will also publish a themed collection on Fluorine Chemistry, guest edited by Professor Veronique Gouverneur (Chair of the 22nd ISFC),  to further promote and develop research in this area.

Fluorine Chemistry Symposium

Both the conference and themed issue will have a broad scope, focusing on fundamental and applied fluorine chemistry, and they will appeal to fluorine chemists working in a range of scientific areas, such as synthesis, material sciences and chemical biology. Researchers wishing to contribute to the ChemComm collection should contact the Editorial Office.

The early bird registration deadline for the conference is the 21st May 2018.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the 2018 Cram Lehn Pedersen Prize winner: Rafal Klajn

Rafal will speak at the 2018 International Symposium on Macrocyclic and Supramolecular Chemistry (ISMSC) in Québec, Canada.

We are proud to announce that Dr. Rafal Klajn, at the Weizmann Institute of Science in Israel, as the recipient of this year’s Cram Lehn Pedersen Prize in Supramolecular Chemistry! This prize, sponsored by ChemComm, is named in honour of the winners of the 1987 Nobel Prize in Chemistry and recognises significant original and independent work in supramolecular chemistry. Our warmest congratulations to Rafal, a well-deserved winner!

 

Dr. Rafal Klajn

Rafal is an Associate Professor at the Weizmann Institute of Science and will receive the award during the 2018 International Symposium on Macrocyclic and Supramolecular Chemistry (ISMSC).

This annual conference consists of sessions of invited lectures that focus upon a single topic area, award lectures and poster sessions. This year, the conference will also feature evening sessions on supramolecular chemistry with keynote speakers as well as an exciting series of Nobel Lectures on the final day!

Find out more and register here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for February

All of the referee-recommended articles below are free to access until 6th April 2018.

Challenges and advances in the computational modeling of biological phosphate hydrolysis
Dušan Petrović, Klaudia Szeler and Shina Caroline Lynn Kamerlin
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C7CC09504J, Feature Article

____________________________________________________

Copper-catalyzed three-component cyclization of amidines, styrenes, and fluoroalkyl halides for the synthesis of modular fluoroalkylated pyrimidines
Xue-Qiang Chu, Bu-Qing Cheng, Yao-Wei Zhang, Danhua Ge, Zhi-Liang Shen and Teck-Peng Loh
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C7CC09571F, Communication

____________________________________________________

Encoding matter with regiospecific 12C/13C isotopic labels
James J. La Clair
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC00080H, Communication

___________________________________________________

Unravelling Lawesson’s reagent: the structure of monomeric (4-methoxyphenyl)phosphine disulfide
Artur Mardyukov, Dominik Niedek and Peter R. Schreiner
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC00034D, Communication

___________________________________________________

Enhanced hydrogen spillover to fullerene at ambient temperature
Hirotomo Nishihara, Tomoya Simura and Takashi Kyotani
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC00265G, Communication

___________________________________________________

Spatially resolved coding of λ-orthogonal hydrogels by laser lithography
Rhiannon R. Batchelor, Eva Blasco, Kilian N. R. Wuest, Hongxu Lu, Martin Wegener, Christopher Barner-Kowollik and Martina H. Stenzel
Chem. Commun., 2018,54, 2436-2439
DOI: 10.1039/C7CC09619D, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

An Organometallic Toolbox for the Study and Synthesis of Unique N-Heterocyclic Carbenes

N-heterocyclic carbenes (NHCs) are an interesting example of chemical curiosity turned commonplace. NHCs are stable singlet carbenes located within an N-heterocycle, in which the carbon centre bears an sp2 hybridised pair of electrons. As early as 1835 chemists were thinking about carbenes, with Dumas’ optimistic (if unsuccessful) attempt to synthesise the methylene carbene by dehydrating methanol. For many years the intentional study of carbenes was considered too demanding because of their instability, and so they remained in relative obscurity. A number of seminal papers changed this preconception; in particular, a report by Wanzlick in 1968 reporting the synthesis of the first NHC-metal complex using mercury and the first synthesis of a stable and isolable NHC by Arduengo in 1991.

Intensification in research and interest in NHCs over the past thirty years may have originated with these seminal reports, but it continues because of the success of NHCs in catalysis: both as strongly σ-donating metal ligands and nucleophilic organocatalysts. One of the most valuable features of NHCs is the ability to tailor their steric and electronic properties by altering the heterocyclic ring and N-bound substituents. Accordingly, the study of NHC reactivity and the development of methods to functionalise NHCs are essential for continued innovation in this field.

Drs Marina Uzelac and Eva Hevia at the University of Strathclyde, Scotland, have written a review article summarising organometallic methods to metallate N-heterocyclic carbenes. The work summarises metallation of all three components of the NHC: the carbenic carbon, the heterocyclic backbone and the N-bound substituents.

The lithiated complex (1), synthesised by treatment of the N-heterocyclic carbene NHC with nBuLi, can be transmetallated at the C4 position by a number of main group elements to give a variety of bimetallic complexes (2). These complexes can be selectively quenched to generate NHC complexes with unconventional regiochemistry (3).

The lithiated complex (1) can be transmetallated at the C4 position by a number of main group elements to give a variety of bimetallic complexes (2). These complexes can be selectively quenched to generate NHC complexes with unconventional regiochemistry (3).

To exemplify the breadth of research discussed; beginning with 2,6-diisopropylphenyl (dipp) substituted imidazole-2-ylidenes, the reactivity of the NHC can be unlocked by initial addition of an alkali metal such as lithium, sodium or potassium (see figure). Metallation at the C4 position occurs by deprotonation of the vinyl protons in the NHC backbone, while a second metal coordinates to the carbene electron pair at the C2 position. From this species (1) it is possible to transmetallate the C4 position with a less-polar metal such as zinc, aluminium, gallium, boron or iron to furnish a bi-metallic NHC (2). Interestingly, addition of an electrophilic methyl or proton source to this species exclusively quenches the C2 position, generating a suite of unconventional complexes (3) with the carbene electron pair positioned on the C4 carbon.

Lithiation of NHC complexes: a) deprotonation of the backbone of NHC-borane complex; b) co-complexation of NHC-zinc complex with alkyllithium affording lithium zincate; c) deprotonation of the abnormal carbene complex.

Reactivity of main-group NHC complexes towards lithiation.

Further studies investigate how different reagents influence the regioselectively and extent of metallation, how metallated NHCs can activate small-molecules such as carbon dioxide, conditions which can lead to the metallation of N-dipp substitutents, as well as products and speciation following treatment of NHCs with a variety of bimetallic reagents.

In addition to expanding the knowledge of NHC reactivity, the work summarised in this review provides a reference and inspiration to researchers seeking to tailor NHCs for unique applications in synthesis and catalysis.

To find out more please read:

Polar organometallic strategies for regioselective C-H metallation of N-heterocyclic carbenes

Marina Uzelac and Eva Hevia.
Chem. Commun., 2018, Advance Article
DOI: 10.1039/c8cc00049b

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Gold Rocks the Casbah

Researchers at the University of Texas have developed an inventive method to deliver molecules into the cell’s nucleus. Advances in gene therapy and the development of drugs that target DNA, the transcription machinery and other regulatory systems all rely on effective transport of molecules into the nucleus. Furthermore, achieving selective delivery of drugs reduces toxicity to non-target organs while maintaining the therapeutic effect.

Towards this aim, the authors delivered liposomes coated with clusters of gold nanoparticles into the cytoplasm. Laser irradiation of the cells heats the nanoparticles to high temperatures resulting in vapourisation of the water-based cytosol, and the transient formation of nanobubbles. The effect of this is an increase in the porosity of the nuclear envelope, enabling the transfer of various macromolecules from the cytoplasm into the nucleus. The authors describe this technique as ‘nanomechanical transduction’ because it is hypothesised that the mechanical effects brought on by the rapid growth and collapse (20 – 50 ns lifetimes) of the bubbles is responsible for the observed increase in porosity.

Local heating of gold nanoparticles and the subsequent formation of nanobubbles occurs due to ‘plasmon resonance’, whereby an electromagnetic field interacts with gold on the surface of the liposome and drives free-electron oscillation in resonance with the incident laser.

A diagram showing nanomechanical transduction. A gold-coated nanoparticle liposome enters the cell and, upon activation by a laser pulse, creates nanobubbles which causes mechanical disruptions in the cell and increased permeability of the nuclear membrane so molecules such as plasmids can enter.

A diagram showing nanomechanical transduction. A gold-coated liposome enters the cell and, upon activation by a laser pulse, creates nanobubbles and mechanical disruption within the cell, resulting in increased permeability of the nuclear membrane.

As a proof-of-concept the authors investigated whether nanomechanical transduction can improve the nuclear localisation of two different types of macromolecule: a dextran polymer labelled with a fluorescent dye, and a plasmid encoding the green fluorescent protein. In the first experiment, cells containing the dextran polymer were incubated with plasmonic liposomes and subjected to a near-infrared laser pulse. Up to 70% fluorescence intensity was observed in the nucleus compared to the cytoplasm, far exceeding the result from control experiments using electroporation to increase cell membrane permeability. In a similar way, nanomechanical transduction resulted in a 2.7 fold increase in the expression of the green-fluorescent protein compared to using electroporation, demonstrating efficient delivery of the plasmid into the nucleus.

The authors entitle their paper ‘rock the nucleus’ and, unintentional reference or not, I think a Casbah (one meaning is the central keep, or citadel, of a walled city) is a rather fitting analogy for the nucleus: the command post of the cell, and safeguard of genetic information. The authors of this work offer a sophisticated yet general method for molecules to breach the walls.

To find out more please read:

Rock the nucleus: significantly enhanced nuclear membrane permeability and gene transfection by plasmonic nanobubble induced nanomechanical transduction

Xiuying Li, Peiyuan Kang, Zhuo Chen, Sneha Lal, Li Zhang, Jeremiah J. Gassensmith and Zhenpeng Qin.
Chem. Commun., 2008, Advance Article
DOI: 10.1039/c7cc09613e

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Anchoring Arynes on Graphene with Microwave but No Solvents

Recently in ChemComm, an international team from Italy and Spain reported a non-conventional way to anchor arynes onto graphene surface using microwave. Their developed method is fast, efficient, mild and solvent-free.

Attaching functional groups onto graphene surface, i.e. functionalization, allows the physical and chemical properties of graphene to be fine-tuned, such as electrical conductivity and solubility. Conventional solvent-based functionalization strategies usually involve time-consuming reactions and tedious purification steps. The poor suspension stability of graphene in solvents, particularly in polar organic solvents, greatly hinders the overall functionalization efficiency. Therefore, establishing easy and solvent-free functionalization protocols for graphene is highly needed.

M. Prato, A. Criado and coworkers made a breakthrough in addressing this challenge by developing a microwave-assisted functionalization method. Their method to functionalize graphene consists of cycloaddition reactions between few-layer graphene (FLG) and arynes (Figure 1). These reactions proceed by mixing the dry powder of FLG and arylene anhydrides, the precursors of arynes, followed by rapid heating under microwave irradiation. The whole process is solvent-free and occurs within half a minute. It is also applicable to a variety of arynes (Figure 2).

Figure 1. The schematic illustration of the microwave-assisted functionalization of graphene with arynes. This process can be carried out within half a minute and is solvent-free.

Figure 2. A variety of arynes capable of being anchored on graphene surface. 1~6 represent the arylene anhydrides and f-G(7)~f-G(12) are corresponding arynes attached onto graphene.

The most unique feature of the demonstrated method is the dual role of FLG. In addition to being one of the reactants, FLG is capable of absorbing microwave energy, and enables its surface to rapidly reach high temperatures that significantly accelerate the cycloaddition reactions.

This microwave-assisted functionalization method shows great promise as a stepping stone for the fast and efficient modulation of graphene surface and subsequently, the performance of graphene-based electronics.

 

To find out more please read:

Microwave-Induced Covalent Functionalization of Few-Layer Graphene with Arynes Under Solvent-Free Conditions

V. Sulleiro, S. Quiroga, D. Peña, D. Pérez, E. Guitián, A. Criado and M. Prato

Chem. Commun. 2018, DOI: 10.1039/C7CC08676H

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is an online blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)