ChemComm Milestones – Tom Hasell

We’re excited to bring you our interview with Tom Hasell who published his #ChemComm1st article in 2016. We spoke to Tom about his experience as a first-time independent author publishing ‘Porous inverse vulcanised polymers for mercury capture

Read the interview here.

What are the main areas of research in your lab and how has your research progressed since publishing your first article?
I’ve always worked in materials chemistry. I love investigating new materials and trying to understand how they work. But as well as just academic interest, I like materials that could have practical applications. Often one of the challenges for new academic materials is that they can be expensive to produce – either because of the cost of the starting materials, or the complex processes used to make them. That can be a real barrier to industrial applications. When I started my own group, I knew I wanted us to work on interesting new materials, but I wanted us to limit ourselves to ones that were cheap and ideally sustainable, so that they would have potential for widespread use. Trying to make functional polymers out of elemental sulfur is a great example of that ambition. Sulfur is a by-product of the petrochemicals industry, and the supply outweighs demand, so you can buy it for roughly transport costs. I’d seen some early papers showing that sulfur could be made into stable polymers – which we could maybe make useful materials from. Mercury has a high affinity for binding to sulfur, so these polymers could be great filters to capture toxic mercury – if they could be made porous. The paper we published as a new group, in Chemical Communications, was the first report of making these “inverse vulcanised” sulfur polymers porous, and showed that it improved their mercury uptake.
Since then we have carried on working in sulfur polymers, it’s a fascinating new area with a lot to explore, and since that paper we have gone on to explore other ways to induce porosity in these materials, such as by salt templating to make the porosity better connected, or by using carbonisation, or coating onto porous supports to generate microporosity. There are also a lot of non-porosity based applications for sulfur polymers that will depend on their physical properties, which we have been working to improve, as well exploring sustainable crosslinkers to react with the sulfur, and how catalysts can improve the synthesis. The unique nature of sulfur based polymers gives them potential for applications in optics, batteries, and as antimicrobial materials.

Describe your journey to becoming an independent researcher.
Some people are certain that they want an academic career from the start but I was never sure what I wanted to do after I finished university. In my fourth year as an undergraduate, I did a research project in Steve Howdle’s group and really enjoyed it. He asked me if I wanted to stay on and do a PhD and I agreed – I was enjoying the research and it would put off making a decision for a while. After the PhD, I continued in research working as a postdoc for Andy Cooper. I still wasn’t sure what I wanted to do but I was enjoying the research so I just kept on at it. I was nervous of going for an academic career because although I loved research, I wasn’t sure the struggle for funding, admin, and management were for me. After sitting on the fence for perhaps a little too long I decided to go for it anyway, and applied for a Royal Society fellowship, which is what gave me the independence to start my own group. In honesty, the precarious nature of many years of short term contracts, and lack of security was difficult, and at times it was a bumpy road that almost made me leave academia. I can see why it puts people off, and I think we need to change this.

What is the best piece of advice you have ever been given?
Learn the difference between urgent and important. It’s great advice. I’m terrible at it.

Why did you choose to publish your first article in ChemComm?
ChemComm was always one of my favourite journals as PhD student and postdoc. The short format means the key message of the research tends to come across clearly. As a new group, the broad readership and good reputation of the journal made it a great target for our first paper.

Tom Hasell is a Lecturer and Royal Society University Research Fellow in the Stephenson Institute for Renewable Energy at the University of Liverpool. Originally from Yorkshire, he is a graduate of the University of Nottingham, where he stayed to complete a PhD under the supervision of Steve Howdle (Chemistry) and Paul Brown (Engineering), while collaborating closely with Martyn Poliakof, as well as placements in America (Eric Beckman, University of Pittsburg) and Japan (Satoshi Yoda, NIAST). He then joined Andy Cooper’s group at the University of Liverpool in 2008, initially as a postdoctoral researcher and later as a research coordinator. During this time he played a significant role in the development of porous organic cages. After securing a Royal Society University Research Fellowship, Tom was able to start his own independent group in Liverpool in 2015. This group is focussed on using waste to make functional new materials. He has worked in a wide range of areas across materials science, including polymers, supercritical fluids, nanocomposites, and porous materials. Tom was awarded the European Young Chemist of the year award in 2014, and was named as a Journal of Materials Chemistry Emerging Investigator in 2017. Follow Tom on Twitter: @TomHasell

Read more #ChemComm1st articles in #ChemCommMilestones – First Independent Articles  and follow the hashtags on our Twitter page.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Emerging Investigator Lectureship 2021 – nominations now open!

Know an outstanding emerging scientist who deserves recognition? Nominate now for the 2021 ChemComm Emerging Investigator Lectureship

We are pleased to welcome nominations for the 2021 Emerging Investigator Lectureship for ChemComm.
All nominations must be received by 1st February 2021.

ChemComm Emerging Investigator Lectureship

  • Recognises emerging scientists in the early stages of their independent academic career.
  • Eligible nominees should have completed their PhD in 2013 or later. Appropriate consideration will be given to those who have taken a career break or followed a different study path.

Lectureship details

  • The award aims to recognise emerging scientists in the early stages of their independent academic career. The winner will be invited to present a lecture on their work, as well as receive £1500 and a certificate of recognition.
  • The recipient will be asked to contribute a review article for the journal.

How to nominate

  • Self-nomination is not permitted. Nominators must send the following to the editorial team via chemcomm-rsc@rsc.org by 1st February 2021.
  • Recommendation letter, including the name, contact details and website URL of the nominee.
  • A one-page CV for the nominee, including a summary of their education, dates of key career achievements, a list of up to five of their top independent publications, total numbers of publications and patents, and other indicators of esteem, together with evidence of career independence.
  • A copy of the candidate’s best publication to date (as judged by the nominator).
  • Two supporting letters of recommendation from two independent referees. These should not be someone from the same institution or the candidate’s post doc or PhD supervisor.
  • The nominator and independent referees should comment on the candidate’s presenting skills.

Incomplete nominations or those not adhering to the above requirements will not be considered, and nominees will not be contacted regarding any missing or incorrect documents.

Selection procedure

  • The editorial team will screen each nomination for eligibility and draw up a shortlist of candidates based on the nomination documents provided.
  • The recipient of the lectureship will then be selected and endorsed by a selection panel composed of members of the ChemComm Editorial Board. The winner will be announced in the summer of 2021.

NB: Please note that members of the selection panel from the ChemComm Editorial Board are not eligible to nominate, or provide references, for this lectureship.

For any queries, please contact the editorial team at chemcomm-rsc@rsc.org.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Silvia Marchesan

In 2011, Silvia Marchesan published her first article as a corresponding author in our journal. We wanted to speak to Silvia about why she chose ChemComm as home for Tripeptide self-assembled hydrogels: unexpected twists of chirality.

Read our interview with Silvia here:

What are the main areas of research in your lab and what motivated you to take this direction?
Nature’s choice for homochirality (e.g., L-peptides) has stimulated our research, as we question it with heterochiral molecules. The scientific journey in this direction started from the design of simple and low-cost tripeptides to define self-assembly rules within chemical systems of biological relevance. We typically use 1 or 2 D-amino acids in D,L- tripeptides, and study small libraries with variations in stereochemistry or amino acid sequence. We recently established how chirality affects spatial conformation for assembly from the molecular, through the nano-, micro- and up to the macroscale. In this way, we can link macroscopic properties of the final systems back to the fine structural details of the building blocks. Our systems assemble in benign solvents, such as buffered water or acetonitrile, and design allows the fine-tuning of their lifetime and biodegradation rate. Applications vary, from biomimicry of natural structures to antimicrobial or bioadhesive soft matter (ChemComm 2020), to the bioinspired design of catalysts (ChemComm 2017), whereby function can be switched on/off with assembly/disassembly.

As Alice steps into Wonderland through the mirror, so we like to think that use of the mirror-image of natural L-amino acids enables entry into a supramolecular wonderland, whereby the building blocks are similar overall to their natural counterparts, but with a “magical twist” (indeed, often D-amino acids induce a kink in the backbone). We also like the challenge to combine different systems together at the boundary with nanotechnology: a branch of our research enjoys stimulating collaborations to attain hybrid or composite nanomaterials with carbon nanostructures for new applications in catalysis, biomaterials, biomarker detection, etc.

Can you set this article in a wider context?
The 2012 Communication set the first example whereby a simple substitution of an L-amino acid with its D-enantiomer in an unprotected (linear) peptide sequence dictated a dramatic change in self-assembly behavior, since the tripeptides with D-L-L stereoconfiguration formed nanostructured hydrogels at physiological conditions, while their homochiral analogues simply precipitated. Moreover, a simple change of order in the amino acid sequence allowed to achieve different nanomorphologies (i.e., twisted fibrils or nanotapes), giving scope for further investigations. It took some years to obtain funding for this research and gather the required resources to identify the rationale behind these observations, as well as to convince skeptics that this approach can indeed be extended to other examples, and can add function to the assemblies. Examples include catalysis (ChemComm 2017) or mimicry of biological structures, such as the extracellular matrix (ECM) to sustain cell culture (ChemComm 2016) or even to induce cell adhesion, with bioactive ECM-derived motifs (ChemComm 2020). The possibility to create a desired function with the assemblies is especially attractive to attain spatiotemporal control over reaction cascades, or to design therapeutics that are activated where and when needed.

What do you hope your lab can achieve in the coming year?
Funding! Our funded projects have ended and further resources are required to make the leap towards tailored applications. These systems have a great potential: research has identified thus far sequences with very interesting properties, such as the ability to inhibit pathological amyloid fibrillization, and to exert antimicrobial activity only when assembled. Manuscripts are in preparation, so… stay tuned! Full-atom molecular dynamics simulations have unveiled how the peptides dance as they assemble, and single-crystal XRD has provided mesmerising photographs of water-channels formed by simple sequences, and with varying diameter in the nanometer scale. Given the required resources, I am confident we can produce useful dynamic systems and perhaps even shed a new light on life’s choice for homochirality.

Describe your journey to becoming an independent researcher.
I fell in love with research at first sight, and the fire burns bright despite the rollercoaster of academic life. My journey was non-conventional, as I simply followed the passion for science that led me from Italy (M.Sc. on fullerenes under the supervision of Profs Prato and Da Ros) to the UK (to work with Dr Macmillan who shared my love for (glyco)protein engineering), Finland (where I joined the group of Prof Gahmberg on integrin biochemistry and protein-protein interactions), Australia (joint postdoc between CSIRO and Monash University to work with Prof Forsythe on nanostructured biomaterials) and then back to Italy. When I was at UCL, after work, I loved to stop by the Wellcome Exhibition Centre and the British Library to get inspired. It is there that I discovered the original drawings of Alice in Wonderland, and I am extremely grateful to my supervisors in Australia for allowing me to explore new research avenues in my “spare” time. I wrote many unsuccessful grants, and after submitting what I thought was going to be the last one (thinking of plan B, out of academia), I hit the jackpot with a starting package from the Italian Ministry of Research (MIUR) through the SIR scheme. That was a game-changer that created momentum, and talented postdocs from abroad were attracted to the team, joining forces to explore the exciting area of supramolecular chemistry.

What is the best piece of advice you have ever been given?
To be true to your dream, and commit to it 100%. Enthusiasm is contagious, and creates very positive dynamics in a team. My PhD supervisor offered plenty of quotes from Star Wars, which in turn I offer to my team now! There is also a mask of Darth Vader next to my desktop, to remind me of the urgent need to prompt and implement positive change, to create a better and more inclusive culture in science.

Why did you choose to publish in ChemComm?
During the PhD I had published one article in ChemComm as first author, and I was impressed by the rapid publication times, simple process, and above all, fair and constructive peer-review comments. The whole experience made me feel welcome and part of the scientific community, reflecting other interactions with the RSC and in the UK. ChemComm offered the perfect platform to publish our proof-of-concept and to sail it out into the wider chemistry community. It was an uplifting and totally unexpected surprise to be sitting on my desk Down Under and receive emails from the other side of the world, from colleagues, and from my PhD supervisor, with congratulations for the work. It is important for emerging PIs to receive support from the community– even a short email made a positive and lasting difference.

Marchesan’s Group in 2018, before the COVID-19 pandemic

Silvia moved to UK in 2004 to join Procter & Gamble for an R&D internship, just before taking on a PhD at The University of Edinburgh (UK). She enjoyed also the research environment at UCL (2005-2007), where her PhD supervisor, Dr. Derek Macmillan, had established a new lab. She then moved to the University of Helsinki (2008-2010) as Academy of Finland Fellow, and then to Melbourne as CRSS Fellow (2010-2012) in a joint scheme between Monash University and CSIRO (Australia’s national science agency). In 2015 she set up her independent lab at the University of Trieste (www.marchesanlab.com), and secured a tenure-track position that led her to Associate Professorship (2018) and Habilitation for a Full Professorship (2018). The research potential of heterochiral self-assembling peptides was recognized by Nature Index (2018) and Nature Chemistry (2019). Find the lab on Twitter: @MarchesanLab

Don’t forget to read Silvia’s #ChemComm1st article in our collection ChemComm Milestones – First Independent Articles. Find out more by following the hashtags #ChemComm1st and #ChemCommMilestones on our Twitter.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Sudeshna Roy

Earlier in the year, Sudeshna Roy published her first independent research article in ChemComm. As part of our ongoing #ChemCommMilestones initiative, we wanted to speak to Sudeshna about her experiences becoming an independent researcher. Read Sudeshna’s #ChemComm1st article here: Regioselective synthesis of 4-fluoro-1,5-disubstituted-1,2,3-triazoles from synthetic surrogates of α-fluoroalkynes.

Here’s our interview with Sudeshna.

What are the main areas of research in your lab and how has your research progressed since publishing your first article?
The central theme of our lab revolves around small molecules. We contribute to developing new methods and strategies to access small molecules of biological and medicinal relevance and using them as tools to probe biological questions or in human diseases. Currently, we are pursuing seemingly two disparate programs that I envision merging into a drug-discovery platform. We have always been drawn to fluorination strategies and the impressive surge in fluorinated pharmaceuticals and agrochemicals. We identified that fluoroalkynes, which would be the simplest precursor as a gateway for new fluorinated motifs, are elusive and notorious for undergoing spontaneous cyclotrimerization reactions. A search for synthetic surrogates led us into the domain of fluorinated alkenes and their fascinating chemical reactivity portfolio, primarily due to the polarity inversion feature. On the other hand, we are deeply committed to addressing the ongoing global health crisis of antimicrobial resistance by developing new chemotherapeutic agents against new and existing bacterial targets to expand our armamentarium of antibacterials. We are currently pursuing a multi-disciplinary collaborative project to develop a new class of compounds with narrow-spectrum activity against Mycobacterium tuberculosis (Mtb), the causative agent for tuberculosis. Our ultimate merger will be using the hand-tailored fluorinated compound library, developed in our lab, for ligand-based screening using 19F NMR against antibacterial targets of interest to seek effective and new antibacterials.

Since our first publication in ChemComm, the ongoing efforts have generated an array of diverse heterocyclic compounds using fluorinated alkenes as a synthetic precursor. Concurrently, we have discovered a new class of compounds that we are very excited about. The parent compound of this family shows a narrow-spectrum anti-tuberculosis activity, and other analogues show broad-spectrum activity, including methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococci (VRE).

What do you hope your lab can achieve in the coming year?
Like everywhere else in the world, our research has been severely impacted by COVID-19. All the labs at the University of Mississippi School of Pharmacy were shut down, including ours, for almost two months. We became partially operational starting mid-May at a much-reduced capacity. Accepting the reality that this will remain for a while, in the coming year, we hope to publish more in the area of fluorinated heterocycles, expand our research directions in fragment-based screening to merge our efforts of antibacterial discovery and fluorine chemistry. We also hope to continue our multidisciplinary collaboration on the tuberculosis drug discovery front. We are excited about our recent discovery of a new class of compounds that specifically inhibit Mtb’s growth and survival. We observed broad-spectrum activity through different chemical modifications of the parent compound, including MRSA and VRE. We are investigating the mechanism of action (MoA) and the biomolecular target. The parent compound’s MoA is unknown, whereas interestingly, some analogs target a protein called, MraY, which is involved in bacterial cell wall synthesis. We are definitely looking forward to resuming travel next year and attend conferences.

Describe your journey to becoming an independent researcher.
I have always been interested in chemistry and pursued B.Sc in chemistry from St. Stephen’s College in India and an M.Sc. in organic chemistry from the University of Delhi in India. During my Ph.D., I worked on the total synthesis of tetrahydrofuran-containing natural products with an anti-cancer activity that sparked my interest in small molecules’ biological applications. Hence, I expanded my focus to a more applied field of medicinal chemistry and drug discovery during my postdoctoral tenure. At the University of Kansas, I was part of the NIH-funded Molecular Libraries Probe Production Centers Network (MLPCN) Specialized Chemistry Center, where I participated in several drug-discovery projects in therapeutic areas ranging from mitochondrial permeability transition pore (mtPTP), multiple sclerosis, Alzheimer’s disease, and cardiovascular disease, to name a few. At the UNC Eshelman School of Pharmacy, I gained experience in developing inhibitors of RNA-binding proteins Hu antigen R and Musashi-1 RNA-binding proteins that are overexpressed in breast and pancreatic cancers. Through these experiences, I realized one of my strengths is building a team and leading multidisciplinary collaborative projects. It gives me a tremendous opportunity and pleasure to learn something completely new that I have never done before and integrate those skill sets in drug discovery projects.

I had an interesting journey transitioning to the University of Mississippi as a tenure-track faculty, though. I had no clue I would end up being a PI. As I was nearing the end of my postdoc tenure, I was mainly focusing on applying for industrial jobs. Being an international student, I had limited options with my then visa situation. Even though I was open to different opportunities, I always thought academia was daunting. Constantly thinking about new ideas, securing grant funding, and running a lab leaves you with not much for anything else. Thankfully, I had a couple of great mentors who believed in me and encouraged me to pursue academia. So, I applied and got lucky! Now I know all the scientific pursuits could be rewarding, despite all the challenges. We can be smart and choose how much time to spend to enjoy other aspects of life. It’s a lot of fun working with students that are so driven and passionate. It motivates me to do better to help them in their journey!

What is the best piece of advice you have ever been given?
I have been fortunate to have great mentors in my journey so far and learned a great deal through my advisors, colleagues, and students! However, there are a few that need special recognition. I will attribute my scientific growth to my postdoc advisor Prof. Jeffrey Aubé and being part of the Aubé lab. Jeff has always given me honest opinions and useful advice on setting up a lab and what to expect as a new PI. A close friend of mine, Debajit Saha, who is now an Assistant Professor at Michigan State, always told me to pursue crazy ideas and not be afraid of failure or making mistakes. I have yet to follow my crazy ideas, but I have definitely learned a lot through failures and mistakes. One of the most useful life advice I got was from my therapist. She reminded me to enjoy all aspects of life, think positively no matter what, keep dreaming where and what you want to be in the future; it will get you closer. So, I am always dreaming. Fingers crossed!

Why did you choose to publish your first article in ChemComm?
For our work on the use of fluorinated alkenes as synthetic surrogates for fluoroalkynes to access fluorinated triazoles, we wanted to reach out to a broader audience encompassing all areas of chemistry, materials to chemical biology. We hope our method for preparing fluorinated triazoles will find use in the agrochemical and pharmaceutical industry and materials sciences. We envisioned ChemComm would be a great platform to feature our work!

Bio: Sudeshna obtained her Ph.D. from the University of Missouri-St. Louis. She then joined Professor Jeffrey Aubé’s group for a post-doctoral position first at the University of Kansas and then at the University of North Carolina at Chapel Hill. Sudeshna was appointed as an Assistant Professor of Medicinal Chemistry at the University of Mississippi School of Pharmacy in 2017. Her laboratory develops and applies small molecules for various therapeutic areas, mainly focusing on antibacterial drug discovery. Follow Sudeshna on Twitter: @Roy_Laboratory

 

You can find Sudeshna’s Communication, and other #ChemComm1st articles, in our collection ChemComm Milestones – First Independent Articles.

Or follow the hashtags on our Twitter for more interviews: #ChemCommMilestones #ChemComm1st

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Excited-state aromaticity for metal systems

Chemists use many rules to describe and predict molecular properties and behaviours. Hückel’s rule is a well-known example, and is used to determine the aromatic character of planar, cyclic molecules containing π-bonds. Aromaticity is the property that increases the stabilisation of a planar molecule by the delocalisation of electrons in π-bonds, and according to Hückel’s rule, a molecule is aromatic if it contains 4n + 2 π-electrons and antiaromatic if it contains 4n π-electrons. Whilst Hückel’s rule applies to the singlet ground state of a molecule (i.e. when all electrons are paired), Baird’s rule is used to establish aromaticity in the triplet state (i.e. two unpaired electrons), and is essentially the opposite; aromatic for 4n and antiaromatic for 4n + 2 π-electrons (Figure 1). Baird’s rule is useful for understanding the excited (triplet) state properties of molecules, but has so far been limited to describing organic species only.

Huckel and Baird aromaticity for metal species

Figure 1. An example of a Baird aromatic all-metal species (left), with orbitals that exhibit Baird aromaticity in the triplet state (right), and Hückel antiaromaticity in the singlet state (centre)

A collaborative effort by researchers in China, Spain and Poland have now demonstrated that Baird aromaticity can be translated to all-metal systems using a series of DFT experiments. The researchers selected derivatives of Al44-­, a planar moiety with 4 π-electrons that is antiaromatic in the ground state (consistent with Hückel’s rule). They determined that in the triplet (T1) state, the two unpaired electrons in Al44-­ occupied σ molecular orbitals (MOs) instead of π MOs; these are the singly-occupied molecular orbitals (SOMOs) shown in Figure 2 that show anti-bonding character for the σ-radial system. The researchers could then infer a triple aromaticity for the triplet state of Al44- from the formal electron count: Hückel aromaticity of the 2 electrons in the σ-tangential system (HOMO); Hückel aromaticity of the 2 electrons in the π-system; and Baird aromaticity of the 4 electrons in the σ-radial system (SOMO, SOMO’ and HOMO-2).

Molecular orbitals for Al4(4-)

Figure 2. The key molecular orbitals and optimised structure for the triplet state

To further confirm the Baird aromaticity of the triplet Al44-­, the researchers calculated the singlet-triplet energy gaps of both the naked anion and the cation stabilised species, Li3Al4. They noted small energy gaps between the singlet and triplet states, which most likely results from the extra stabilisation of the Baird aromaticity in the triplet state. The researchers also performed an electron density of delocalised bonds (EDDB) analysis to quantify the extent of electron delocalisation (and therefore aromatic character) of Al44-­, Li3Al4 and other metallic systems, in comparison to a classical Baird aromatic organic molecule, cyclobutadiene (CBD). They noted comparable values for π-electron delocalisation in the metallic systems compared to CBD, indicating triplet state aromaticity. Additional calculations carried out by the researchers further proved the Baird aromatic character of the all-metal systems, demonstrating how the concept of Baird aromaticity can be extended beyond organic systems and paving the way for future understanding of aromatic, excited state metallic systems.

 

To find out more, please read:

All-metal Baird aromaticity

Dandan Chen, Dariusz W. Szczepanik, Jun Zhu and Miquel Solà

Chem. Commun., 2020, 56, 12522-12525

 

About the blogger:

Dr. Samantha Apps just finished her post as a Postdoctoral Research Associate in the Lu Lab at the University of Minnesota, USA, and obtained her PhD in 2019 from Imperial College London, UK. She has spent the last few years, both in her PhD and postdoc, researching synthetic nitrogen fixation and transition metal complexes that can activate and functionalise dinitrogen. Outside of the lab, you’ll likely find her baking at home, where her years of synthetic lab training has sparked a passion in kitchen chemistry too.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Marta Figueiredo

Marta Figuerido reached her first ChemComm Milestone with this article: Electrocatalytic synthesis of organic carbonates. We spoke to Marta to find out about her experiences as a first-time independent author and why she chose to publish with ChemComm. Read our interview with Marta below.

 

What are the main areas of research in your lab and what motivated you to take this direction?
My main areas of research are electrochemistry and electrocatalysis for energy storage and conversion and synthesis of high-value chemicals. This research is highly motivated by the urgent need for new energetical solutions, either new energy systems or systems based on renewable energy sources. Electrochemistry has the unique possibility of making and breaking bonds by using renewable electrons. This offers the possibility to store energy in chemical bonds, such as in hydrogen and formic acid, to make renewable fuels (such as ethylene and ethanol) or even produce bulk chemicals (such as organic carbonates).

Can you set this article in a wider context?
With this article, we aim to reinforce, within the scientific community and/or chemistry enthusiasts, the idea that fundamental studies are of paramount importance towards the development of new technologies and solutions. It is required to understand the systems at the molecular and nanoscale level in order to optimize it. The investigations reported in this article, do not provide a solution for the synthesis of organic carbonates yet, however, they are a stepping stone for the development of this alternative process.

What do you hope your lab can achieve in the coming year?
Scientifically, I hope that our lab achieves recognition in the field of electrocatalysis for the synthesis of chemicals and gives significant contributions to the scientific community. We are still a young lab, but luckily, we are within the Inorganic Materials and Catalysis group. This group provides not only all the necessary experimental tools but also a broad range of expertise in heterogeneous catalysis, design of catalytic materials and computational modelling that will make our tasks much more comfortable. Moreover, I am surrounded by incredibly motivated researchers (PhD’s and postdocs, technicians and colleague staff members) that I am sure will help with this new goal. I sincerely hope that the world wins the fight with COVID and we can go back to our lab and enjoy science together.

Describe your journey to becoming independent researcher.
My journey to becoming an independent researcher was longer than what is assumed to be the norm. After my PhD, I was a postdoc in 3 different Universities in Europe (Finland, Netherlands, and Denmark). My postdocs were all in the field of electrochemistry, but only the last two were focused on electrosynthesis. Before my current position, as an Assistant Professor at TU/e, I worked as a researcher in industry. I consider that period as one of the most important of my scientific career. In addition to all the learning, it also contributed to develop and define my research aims and interests.

What is the best piece of advice you have ever been given?
Do what you feel its right, and everything else will be fine.

Why did you choose to publish in ChemComm?
There are two main reasons that made me choose to publish in ChemComm. Firstly, it was a personal milestone to publish at ChemComm. Secondly, I was aiming to publish this article in a journal of a broad audience and of general chemistry, and ChemComm is one of the most renowned journals with these characteristics.

Short bio: Marta Costa Figueiredo is Assistant Professor of Electrocatalysis at Eindhoven University of Technology since April 2019. She obtained her PhD in electrocatalysis, science and technology in 2012 at the University of Alicante, Spain under the supervision of Prof. Juan Feliu. After that, she was a postdoctoral researcher at different Universities in Europe such as Aalto University (Finland), Leiden University and University of Copenhagen. Before joining TU/e, Marta worked in the industry as Jr Scientist at Avantium (Amsterdam). In Eindhoven, her research is devoted to electrocatalysis and electro(catalytic)synthesis for sustainable processes and production of high value chemicals.

Find Marta on Twitter: @MartaCFigueired

 

All of our authors’ #ChemComm1st articles are now available in ChemComm Milestones – First Independent Articles.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Alex Murray

This week, we are bringing you more from #ChemCommMilestones – we spoke to Alex Murray about becoming a first-time indepedent author and publishing with our journal.  Read Alex’s #ChemComm1st article: Ionicity-dependent proton-coupled electron transfer of supramolecular self-assembled electroactive heterocycles.

Find out more about Alex in our interview with him below.

What are the main areas of research in your lab and what motivated you to take this direction?
It’s probably easier to start with the second part: I trained as very much an organic chemist, but then moved to the US and learned electrochemistry as a postdoc, but I really am interested in redox-active small molecules more than anything else. The main applications that spring from this that we are researching are firstly new organic redox-flow batteries, and secondly the use of these small organic molecules as homogeneous electrocatalysts, especially with interesting interfacial behaviour.

Can you set this article in a wider context?
Well, this started as a side project really. I was watching a talk by a student from the Hiscock group in my first few weeks as a PI, and I was quite fascinated by their self-associating quinones. There has been so much fantastic and complex work done on the nuances of the electrochemistry of even quite simple quinones so I was really intrigued how these ‘quinone-SSAs’ would behave. What we found, broadly, is that the larger the size of the self-associated species, the more it behaved like a quinone in unbuffered or organic solution, so there appears to be some sort of barrier to proton transfer. But this is interesting, because for this system self-association makes the electron transfer faster, whereas often people have observed the opposite effect. I think with all the excitement about anthraquinones in organic redox flow batteries, the more unusual behaviours we know to look out for the better… and we are working on making other self-associated redox active heterocycles of course.

What do you hope your lab can achieve in the coming year?
Firstly we are following up on this collaboration, where we are interested in more complex supramolecular systems where we can control the self-association more readily. Secondly, we are hoping to make progress on both a new organic redox flow battery, and a new catalytic system we have in the works. It’s been a really tough few months, especially for my international PhD student who struggled to leave and return to her family, then struggled even harder to return to the UK. But things are looking up, and we are hoping to have more really exciting science to show within the next year.

Describe your journey to becoming independent researcher.
Since about a year into my PhD I think this is always something I’d wanted to do, though I was aware it’s not an easy road to say the least! I think the turning point for me was learning about electrochemistry – I really felt the confidence of having a more unique skill set than when I’d been trying to write ‘pure organic’ chemistry proposals, so my personal advice to PhD students and postdocs who want to be independent researchers is definitely to try and learn something very different – find a new field and learn to talk to them, but in a different way than how they talk to one other.

What is the best piece of advice you have ever been given?
“Why not, and what’s the worst that could happen”… this is good advice for crazy scientific ideas (the famous ‘Friday afternoon reaction’), but not in all aspects of life…

Why did you choose to publish in ChemComm?
We chose ChemComm because of the fast publication time, good support for early career researchers and positive previous experiences with the publication process at ChemComm and the RSC in general. Also this paper really sits at the interface of (organic) electrochemistry and supramolecular chemistry so it definitely made sense to go for a journal with a pretty general readership.


Alex was born in Hull, UK in 1989, and obtained an MChem in Chemistry from the University of Sheffield in 2011, with a year of this degree undertaken at Monash University (Australia). He then carried out research in redox organocatalysis at the University of Bath, working in the group of Dr. Dave Carbery, receiving a PhD in 2015. This also included a CASE placement at GlaxoSmithKline. Alex then moved to the University of Nottingham, working for one year in the group of Professor Chris Moody on generating sp3-rich scaffolds for medicinal chemistry. Alex then moved to the US, receiving a Dreyfus Postdoctoral Fellowship to work on electrochemical catalysis in the group of Prof. Yogesh Surendranath at MIT. In May 2018 Alex returned to the UK and was appointed as a Lecturer at the University of Kent.

Don’t miss more #ChemComm1st articles in our collection ChemComm Milestones – First Independent Articles.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Emerging Investigators Desktop Seminar Series

Introducing ChemComm’s Emerging Investigators Desktop Seminar series

Welcome to the latest RSC Desktop Seminars, sponsored by  ChemComm, featuring researchers from our 2020 Emerging Investigators collection. Each session will highlight two early career speakers working in a similar field.

The RSC Desktop Seminar Series is an effort to not only replace in-person research seminars during the current pandemic situation, but to also expand access for researchers around the world looking to connect to some of the leading minds in the chemical sciences. While these RSC Desktop Seminars are taking place in the time zone working hours for the speakers, we encourage any and all interested to register and attend and recordings of the seminars will be available to all registrants after the session.

Upcoming seminars:

Tuesday 17th November 15:00 GMT 

15:05 – “Molecules in a Hurry to Get Rid of Antiaromaticity “
Judy Wu, University of Houston, USA

15:35 – “Development of Chiral Diazaphospholene Catalysis”
Alexander Speed, Dalhousie University, Canada

Find out more and register

 

Wednesday 25th November 8:30 GMT

8:35 – “Symmetry-adapted Protein Assembly and Evolution”
Woon Ju Song, Seoul National University, Korea

9:05 – “Beryllium coordination chemistry and its implications on the understanding of metal induced immune responses”
Magnus Buchner, Philipps-Universität Marburg, Germany

 Find out more and register

 

Wednesday 2nd December 8:30 GMT 

8:35 – “Selective Aromatic C(sp2)-H Bond Functionalization with Diazo Compounds”
Lu Liu, East China Normal University, China

9:05 – “Taming the Manganese Complexes for Hydrogen Transfer Catalysis”
Biplab Maji, Indian Institute of Science Education and Research Kolkata, India

Find out more and register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Jian-Ji Zhong

ChemComm Milestones continues. This week, read the #ChemComm1st article from Jian-Ji Zhong: Photoinduced synthesis of fluorinated dibenz[b,e]azepines via radical triggered cyclization. As part of this feature, we spoke to Jian-Ji about his experience to becoming an independent researcher and why he chose to publish with ChemComm. More below.

 

 

What are the main areas of research in your lab and what motivated you to take this direction?
My group was established in Shantou University in 2018 and we have great passion. Our research interest mainly focuses on organic photosynthesis, including 1) visible-light photocatalysis for the functionalization of carbon-carbon double bonds and carbon-carbon triple bonds, and 2) photocatalyst design. My early career training in photochemistry and nowadays the call for greener, more environmentally benign and sustainable development in chemical society are the main motivation for me to take this direction.

Can you set this article in a wider context?
Functionalization of carbon-carbon double bonds or carbon-carbon triple bonds is a powerful strategy to access important and valuable structure motifs existing in natural product, pharmaceuticals and biological active molecules. The target goal in our group is to synthesize the valuable molecules using green methodology. In this manuscript, we described a simple, efficient and green photochemical protocol for the functionalization of terminal alkynes to construct the valuable dibenz[b,e]azepine skeleton which is the core structure in antidepressants. Various fluorinated groups, which can impact the bioactive properties of these molecules, were successfully incorporated into the skeleton via radical triggered cyclization under simple and mild conditions (room temperature, visible-light irradiation). This protocol does not require harsh conditions such as stoichiometric oxidants or high temperature. Use of inexpensive and commercially available fluorinated reagents highlights the advantages of photocatalysis and the practicability of this protocol. This article greatly inspires us to continue in this research direction.

What do you hope your lab can achieve in the coming year?
It is a cool experience to publish my first independent research in ChemComm, which greatly strengthens our confidence to conquer more challenging tasks in the future. In the coming year, two goals I hope can be achieved are 1) more excellent students to join our passionate group; 2) more exciting research works to be accomplished.

Describe your journey to becoming an independent researcher.
It has not been an easy journey. I finished my undergraduate course in Lanzhou University in June 2010. Organic chemistry is the preponderant discipline in Lanzhou University, therein I acquired a solid foundation of knowledge about chemistry and got excellent experimental skills training. Then I was recommended to Prof. Li-Zhu Wu and Prof. Chen-Ho Tung’s group in Technical Institute of Physics and Chemistry, CAS for my PhD studies. During my PhD, my research work mainly focused on the development of Cross-Coupling Hydrogen Evolution Reactions. To further improve myself, I joined Prof. Chi-Ming Che’s group in Southern University of Science and Technology to start my postdoc research career in Oct. 2015. At that time, I was interested in designing new platinum(II) metal complexes as photocatalyst for organic transformations. After 12 year’s expertise training and many people’s support, especially my PhD and postdoc advisors, I started my independent research career in Shantou University in Jan 2018. Yet it is just the beginning: I will stay focused and keep learning on the road of scientific exploration.

What is the best piece of advice you have ever been given?
In my student career, my advisors always told me “simple is the best”. It always reminds me to do subtraction other than doing addition for scientific research. It is the best piece of advice I have been given.

Why did you choose to publish in ChemComm?
ChemComm is a renowned journal with a broad readership in chemistry. And I like the quick turnaround time for submission of urgent work. That is why I chose ChemComm.

 


Dr. Jian-Ji Zhong’s biography:
January 2018 – present: Associate Professor, Department of Chemistry, Shantou UniversityOct. 2015-Oct. 2018: Postdoc, Southern University of Science and Technology (Advisor: Prof. Chi-Ming Che)Sept. 2010-June 2015: PhD in Organic Chemistry, Technical Institute of Physics and Chemistry, CAS (Advisors: Prof. Li-Zhu Wu and Prof. Chen-Ho Tung)

Sept. 2006-June 2010: Bachelor of Science in Chemistry, Lanzhou University

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Suppor(tin)g iron for catalytic ammonia formation

Dinitrogen fixation, i.e. converting abundant yet inert nitrogen gas into useable forms, has tantalised chemists for decades. One goal is the transformation of dinitrogen (N2) to ammonia using transition-metal catalysts under acidic and reducing conditions. Just a handful of complexes have been reported so far that can catalyse ammonia formation, and only a few of these are iron based, despite the prevalence of iron in the enzymes that can perform this process biologically. Researchers in the US have now discovered a new iron-based bimetallic system that can catalytically transform N2 to ammonia, providing additional studies that help understand this mechanism (Figure 1).

Iron complexes that catalyse ammonia formation from dinitrogen

Figure 1: Existing iron systems that can transform N2 to ammonia, and the tin-iron system in this study (bottom right)

The bimetallic system reported by the researchers is a tin-supported iron complex, analogous to other bimetallics previously studied in the group. Dinitrogen complexes were targeted since N2 coordination to a metal centre activates it towards further reactivity. The researchers prepared two tin-iron dinitrogen complexes, by either one or two electron reductions of a metal-bromide precursor (LSnFeBr) under a nitrogen atmosphere, to form the neutral LSnFe(N2) (1) or the anionic [LSnFe(N2)] (2), respectively. These complexes were characterised using a range of spectroscopic, electronic and structural techniques, which confirmed both coordination of N2 as well as a direct tin-iron interaction (Figure 2).

Characterisation of tin-iron dinitrogen complexes

Figure 2. A) X-ray crystal structures of tin-iron dinitrogen complexes 1 and 2. B) Characterisation of the N2 functionalisation product 3 with the crystal structure (left) and NMR spectra (right).

The further-reduced anionic species, 2, showed a greater extent of dinitrogen activation compared to the neutral species (1). This was determined by a lower infrared N-N stretching frequency and a longer N-N bond in the solid-state structure of 2, both of which indicate a weaker and more activated N-N bond. The researchers therefore selected 2 for further functionalisation reactivity, and found that the reaction with Me3SiCl (an electrophile) resulted in successful N2 functionalisation, forming the diazenido complex LSnFeN2SiMe3 (3). The diazenido complex was also characterised using a range of techniques (Figure 2b), with the solid-state structure clearly showing the silyl electrophile adding to the N2 ligand. Isolated diazenido complexes, like 3, are extremely rare in the literature, and the researchers attribute this apparent stability of 3 to the presence of the supporting tin centre within the bimetallic system. The importance of the tin-support in this system was further demonstrated by computational analyses of complexes 13, whereby the charge of the distal (and reactive) nitrogen correlated with the charge on the tin centre.

Scheme and table showing catalytic ammonia formation using tin iron complexes and other iron systems

Figure 3: Catalytic ammonia formation from N2 using the tin-iron complexes, with comparison to previously reported iron systems.

The researchers tested all three tin-iron complexes for catalytic ammonia formation, using [Ph2NH2]OTf as an acid and CoCp2* as a reducing agent (Figure 3). Both the neutral dinitrogen complex (1) and the diazenido complex (3) proved successful, with generating up to 5.9 turnovers of ammonia. Additionally, the comparable activity of 3 lends further support to the likely presence of a diazenido intermediate in the mechanism. A comparison with existing iron systems shows that the presence of an iron-support greatly enhances the catalysis compared to unsupported iron (see entry 8, Figure 3), indicating the significance of this metal-support and paving the way towards future catalyst design.

 

To find out more, please read:

Bimetallic iron–tin catalyst for N2 to NH3 and a silyldiazenido model intermediate

Michael J. Dorantes, James T. Moore, Eckhard Bill, Bernd Mienert and Connie C. Lu

Chem. Commun., 2020, 56, 11030-11033

 

Samantha Apps acknowledges Michael Dorantes, for proofreading this post, as well as Prof. Connie Lu and the Lu Lab as her colleagues over the last year.

 

About the blogger:

Dr. Samantha Apps just finished her post as a Postdoctoral Research Associate in the Lu Lab at the University of Minnesota, USA, and obtained her PhD in 2019 from Imperial College London, UK. She has spent the last few years, both in her PhD and postdoc, researching synthetic nitrogen fixation and transition metal complexes that can activate and functionalise dinitrogen. Outside of the lab, you’ll likely find her baking at home, where her years of synthetic lab training has sparked a passion in kitchen chemistry too.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)