Archive for the ‘Hot Articles’ Category

New electrochemiluminescence possibilities

Electrogenerated chemiluminiscence (ECL) is a promising detection technique but its application to certain targets, such as small ions, is compromised due to the necessity to use high concentrations of reagents which can contaminate the sample.

Eric Bakker and co-workers have devised a system which separates the sample compartment, where the analyte is introduced alongside the ruthenium-based ECL reagent, from the compartment which contains the co-reactant necessary for the chemiluminescence to be generated. The technique relies on a liquid membrane to selectively transport the ECL ruthenium compound from the sample towards the detector.

This electro-separation technique opens the door to even more targets capable of being detected using ECL.

To learn more about how Bakker and his team have implemented this strategy, download the ChemComm article.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Carbonic anhydrase inhibitors

New drugs need to be found that are capable of targeting carbonic anhydrases – a class of enzyme that catalyses the hydration of carbon dixoide to bicarbonate and H+. By inhibiting or activating these enzymes, a number of pathological disorders can be treated such as glaucoma, osteoporosis and cancer. Unfortunately, many of the drugs developed so far are not selective for the different isoforms of the enzyme.

Representation of the binding mode of an inhibitor compound in the active site cavity of the enzyme

Researchers from Italy have embarked upon investigating the inhibition of mammalian isoforms of carbonic anhydrase using N-substituted benzenesulfonamides. By employing X-ray crystallographic studies, they discovered a completely new binding mode with the enzyme. The team say that by substituting the moieties on the phenyl ring, unexplored regions of the enzyme active site could be targeted, allowing new lead compounds to be identified.

Read the ChemComm article to learn more about their findings.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Revolutionising gene studies

A simple method for detecting a natural nucleobase in DNA could revolutionise epigenetic studies, say Japanese scientists.

5-Hydroxymethylcytosine is abundant in neuron cells and embryonic stem cells and plays a critical role in epigenetic regulation. Scientists are eager for a way to detect it, to help them understand how gene function is initialised.

The team discovered that peroxotungstate can detect 5-hydroxymethylcytosine by oxidising it to a thymine derivative, which can be visualised using gel electrophoresis.

Download the ChemComm article today to find out more.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Bendy Crystals

Scientists are trying to create molecular systems that mimic machinery components. The idea is for these molecular machines to exhibit mechanical movement once an external stimulus is applied.

With this in mind, Japanese researchers have grown crystals that bend upon shining UV light on them. The crystals are of a salicylideneaniline compound which changes its structure depending on the wavelength of light.

The molecular transformation from the enol to the trans-keto form causes the crystals to bend on the macroscopic scale, which is also accompanied by a colour change from pale yellow to reddish-orange. When the UV light is blocked, the crystals resume their initial straight form and colour. This reversible bending can be repeated for over 200 cycles.

To find out more, download Koshima’s ChemComm article.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Yeast cell wall particles for multi-modal imaging

Scientists based in Italy and Portugal have developed a new carrier system for Magnetic Resonance Imaging (MRI) based on yeast cell wall particles (YCWPs).

YCWPs are well tolerated in vivo because they have a cell wall based on a glucan polymer. However, previous attempts at using it as a carrier of hydrophilic and amphiphilic chemicals have failed due to the porous and hydrophilic nature of the membrane.

In this work the team, led by Enzo Terreno at the University of Turin, realised that they could use the YCWPs as microreactors. Once loaded with an imaging agent the particles were exposed to a sudden change in solvent polarity therefore forming a micro-emulsion inside the particles. Importantly this traps the imaging agent in the particle core.

When loaded with gadolinium, the particles were found to have an increased paramagnetic density and also enhanced relaxivity per paramagnetic centre. In all, this should lead to better contrast when used for imaging. In the future Terreno envisages potential applications in cell tracking experiments and particularly for cells found in the immune system.

Want to find out more? Then download the full ChemComm article for free today.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Predicting Gel Formation

Gels are used in a number of applications, including wound dressings and fibre optics. They consist of a 3D network made up of one or more gelators held together by various non-covalent interactions (hydrogen bonding, π-π stacking, van der Waals interactions…) which serve to trap solvent molecules. Depending on the solvent and gelator used, the structure and/or viscosity of the gel can be controlled. A popular method of gel formation is through the addition of a gelator, or thickening agent, to a solution or solvent. Specifically, the development of low molecular weight gelators (LMWG) for the formation of new gels is a very active area of research. Once you can control the shape and viscosity of gels, as well as when and how they form, the possibilities for these systems are endless.

Many research groups have attempted to develop tools that allow gelation to be predicted for a given solvent, but most of these are limited to particular solvents or gelators. There is still no ‘magic bullet’ available for predicting the gelling ability of any solvent. Having said that, Matthieu Raynal and Laurent Bouteiller at UPMC University of Paris and CNRS in Paris, are one step closer towards addressing this deficiency.

Scientists can predict gel formation

In their work, Raynal and Bouteiller applied Hansen solubility parameters (HSPs) to predict the gelling ability of LMWGs in various solvents. These parameters were initially developed to determine solubility, or to see if a given substance will dissolve in another. To reach this conclusion, three contributions must be considered: dispersive interactions, polar interactions and hydrogen bonding, and these values are then plotted on to a 3D graph, called Hansen space. The closer two molecules are to each other, the more likely they will dissolve each other. Although not without its limitations, HSPs have successfully been used by polymer chemists to select solvents for paints or coatings.

To determine if these values could be used to predict gel formation, the duo gathered information on a number of solvents and LMWG sets for which the HSPs were known. When the team plotted the information in to Hansen space, they were surprised to find for each LMWG studied that gel-forming solvents clustered together.  Raynal and Bouteiller were then able to determine the so called  ‘gelation sphere’ (a region of the Hansen space in which solvents forming gels were located in preference to those that form a solution or insoluble species) specific to each LMWG. They then plotted the distance between each solvent and the centre of the sphere predicting the solvents that would form gels, which were easily separated from those that formed a solution or insoluble species with a particular LMWG.

This work could prove to be a real time-saving method for predicting the gelation of a LMWG in any solvent, but first, more LMWGs need to be studied, in a wide variety of solvents. Hopefully gel scientists around the world are on the case and we will soon be able to predict gel formation of a LMWG in any solvent.

Published on behalf of web science writer, Patricia Pantos

Read the full story here:
Organogel formation rationalized by Hansen solubility parameters
Matthieu Raynal and Laurent Bouteiller
Chem. Commun., 2011, 47, 8271-8273

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A step forward for photodynamic therapy

Scientists in the US have developed a new photodynamic therapeutic reagent that works in the absence of oxygen.

Photodynamic therapy (PDT) is an emerging treatment used to eradicate premalignant and early-stage cancer, and also reduces tumour size in end-stage cancers. PDT works by exposing the tissue sample to a light source, which excites the PDT reagent causing singlet oxygen to form due to a reaction with the more common triplet oxygen. The resulting singlet oxygen then invokes cell death in tumour cells. 

The PDT reagent has been designed by Karen Brewer and co-workers from Virginia Tech, where they have shown its capabilities for binding and photocleaving DNA under red light irradiation. The anti-cancer complex [(bpy)2Os(dpp)RhCl)2(phen)]3+ has two metal centres; the osmium portion is capable of photocleaving DNA by singlet oxygen generation and the rhodium part is capable of binding to the DNA in the first place.

Crucially, this is the first complex that works in the absence of oxygen. Tumour cells are often oxygen-depleted environments and therefore a treatment that functions in the absence of oxygen is an important step forward. Future investigations will centre on the bioreactivity of this and other related complexes.

Interested in finding out more? Then download the ChemComm article, which will be free to access until 25th July 2011.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The first hydroamination reaction with a zincocene complex

Peter Roesky, Siegfried Blechert and co-workers at the Karlsruhe Institute of Technology and the Berlin University of Technology have reported the first use of a dizinc complex as the catalyst in a hydroamination reaction.

Hydroamination is the addition of an N–H bond of an amine to an unsaturated C–C bond to give a molecule that contains nitrogen in one step. This is particularly important because many current amine syntheses are multi-step processes. Zinc complexes are advantageous for hydroamination as they are relatively cheap, air and moisture stable and tolerant to a wide variety of functional groups.

With this in mind Roesky and Blechert decided to test the zincocene complex, Zn25-C5Me5)2, for its hydroamination activity. This complex was discovered in 2004 but it is the first time that it has been used as a catalyst. The team found that the catalyst worked well with good yields and conversions and that it tolerates many functional groups.

Want to find out more? Then download the ChemComm article for free today and leave a comment below.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Superior catalytic performance for copper zeolites

Scientists in China have designed a low-cost copper-amine complex and used it as a template for the one-pot synthesis of a zeolite that exhibits excellent catalytic performance.

One-pot synthesis of copper zeolite

Feng-Shou Xiao from Zhejiang University and co-workers from Jilin and Beijing Normal Universities, worked together on rationally designing the copper zeolite (Cu-ZJM-1) with changeable Si/Al ratios. The resulting Cu-ZJM-1 has much higher copper content and a better dispersion of copper cations compared to other zeolites reported in the literature. It exhibits excellent properties when it comes to the selective catalytic reduction of the environmentally harmful gas nitrogen oxide (NOx), by ammonia.

Download this ChemComm communication, which will be free to access until the 15th July 2011.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Iron carbonyl catalyst leads the way

A new iron carbonyl catalyst efficiently reduces amides using lower catalyst concerntrations, quicker reaction times and lower reaction temperatures, say scientists in Japan.

 

Iron carbonyl catalyst reduces various carboxamides using hydrosilane

Hideo Nagashima and colleagues from Kyushu University have reported a new heptanuclear iron carbonyl catalyst that can reduce various carboxamides using hydrosilane, 1,2-bis(dimethylsilyl)benzene. This is an important development as the catalyst actually shortens the reaction times, even at lower catalyst concentrations and at lower temperatures, when compared with other reported iron-catalysed hydrosilane reductions. 

Fancy reading more? Then download the ChemComm communication, which will be free to access until the 15th July 2011.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)