Archive for the ‘Hot Articles’ Category

Top 25 Chemical Science articles April–June 2014

We are delighted to share with you the top 25 most downloaded articles in Chemical Science from April–June 2014.

Top 25 most downloaded Chemical Science articles for Q2 2014

Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells
Anurag Krishna, Dharani Sabba, Hairong Li, Jun Yin, Pablo P. Boix, Cesare Soci, Subodh G. Mhaisalkar and Andrew C. Grimsdale
DOI: 10.1039/C4SC00814F

Copper catalyzed Heck-like cyclizations of oxime esters
Adele Faulkner, Nicholas J. Race, James S. Scott and John F. Bower
DOI: 10.1039/C4SC00652F

Enantioselective direct α-alkylation of cyclic ketones by means of photo-organocatalysis
Elena Arceo, Ana Bahamonde, Giulia Bergonzini and Paolo Melchiorre
DOI: 10.1039/C4SC00315B

Oxygen nucleophiles as reaction partners in photoinduced, copper-catalyzed cross-couplings: O-arylations of phenols at room temperature
Yichen Tan, José María Muñoz-Molina, Gregory C. Fu and Jonas C. Peters
DOI: 10.1039/C4SC00368C

Efficient C–H bond activations via O2 cleavage by a dianionic cobalt(II) complex
Andy I. Nguyen, Ryan G. Hadt, Edward I. Solomon and T. Don Tilley
DOI: 10.1039/C4SC00108G

Sunlight photocatalyzed regioselective β-alkylation and acylation of cyclopentanones
Megumi Okada, Takahide Fukuyama, Keiichi Yamada, Ilhyong Ryu, Davide Ravelli and Maurizio Fagnoni
DOI: 10.1039/C4SC01072H

Copper catalyzed direct alkenylation of simple alkanes with styrenes
Yefeng Zhu and Yunyang Wei
DOI: 10.1039/C4SC00093E

Transition metal-catalyzed direct nucleophilic addition of C–H bonds to carbon–heteroatom double bonds
Xi-Sha Zhang, Kang Chen and Zhang-Jie Shi
DOI: 10.1039/C3SC53115E

Evaluating metal–organic frameworks for natural gas storage
Jarad A. Mason, Mike Veenstra and Jeffrey R. Long
DOI: 10.1039/C3SC52633J

Selective radical amination of aldehydic C(sp2)–H bonds with fluoroaryl azides via Co(II)-based metalloradical catalysis: synthesis of N-fluoroaryl amides from aldehydes under neutral and nonoxidative conditions
Li-Mei Jin, Hongjian Lu, Yuan Cui, Christopher L. Lizardi, Thiago N. Arzua, Lukasz Wojtas, Xin Cui and X. Peter Zhang
DOI: 10.1039/C4SC00697F

Catalytic enantioselective synthesis of 2-aryl-chromenes
Bi-Shun Zeng, Xinyi Yu, Paul W. Siu and Karl A. Scheidt
DOI: 10.1039/C4SC00423J

Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide
David S. Surry and Stephen L. Buchwald
DOI: 10.1039/C0SC00331J

Frustrated Lewis pair chemistry of carbon, nitrogen and sulfur oxides

Douglas W. Stephan and Gerhard Erker
DOI: 10.1039/C4SC00395K

Carbon–fluorine bond cleavage in fluoroarenes via a niobium(III) imido complex: from stoichiometric to catalytic hydrodefluorination
Thomas L. Gianetti, Robert G. Bergman and John Arnold
DOI: 10.1039/C4SC00006D
From themed collection Celebrating the 2014 RSC Prize and Award Winners

Rh(III)-catalyzed C–H functionalization/aromatization cascade with 1,3-dienes: a redox-neutral and regioselective access to isoquinolines
Dongbing Zhao, Fabian Lied and Frank Glorius
DOI: 10.1039/C4SC00628C

Iodoarene-catalyzed fluorination and aminofluorination by an Ar-I/HF·pyridine/mCPBA system
Satoru Suzuki, Tomohiro Kamo, Kazunobu Fukushi, Takaaki Hiramatsu, Etsuko Tokunaga, Toshifumi Dohi, Yasuyuki Kita and Norio Shibata
DOI: 10.1039/C3SC53107D

Complete stereodivergence in the synthesis of 2-amino-1,3-diols from allenes
Christopher S. Adams, R. David Grigg and Jennifer M. Schomaker
DOI: 10.1039/C4SC01214C

An ExBox [2]catenane
Michal Juríček, Jonathan C. Barnes, Nathan L. Strutt, Nicolaas A. Vermeulen, Kala C. Ghooray, Edward J. Dale, Paul R. McGonigal, Anthea K. Blackburn, Alyssa-Jennifer Avestro and J. Fraser Stoddart
DOI: 10.1039/C4SC00488D
From themed collection Celebrating the 2014 RSC Prize and Award Winners

Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H2 and CO2
T. W. Myers and L. A. Berben
DOI: 10.1039/C4SC01035C

Synthesis, electronic structure and reactivity of bis(imino)pyridine iron carbene complexes: evidence for a carbene radical
Sarah K. Russell, Jordan M. Hoyt, Suzanne C. Bart, Carsten Milsmann, S. Chantal E. Stieber, Scott P. Semproni, Serena DeBeer and Paul J. Chirik
DOI: 10.1039/C3SC52450G

Non-directed allylic C–H acetoxylation in the presence of Lewis basic heterocycles
Hasnain A. Malik, Buck L. H. Taylor, John R. Kerrigan, Jonathan E. Grob, K. N. Houk, J. Du Bois, Lawrence G. Hamann and Andrew W. Patterson
DOI: 10.1039/C3SC53414F

Rethinking the term “pi-stacking”
Chelsea R. Martinez and Brent L. Iverson
DOI: 10.1039/C2SC20045G
From themed collection Physical Chemistry

Stereoselective allylboration of imines and indoles under mild conditions. An in situ E/Z isomerization of imines by allylboroxines
Rauful Alam, Arindam Das, Genping Huang, Lars Eriksson, Fahmi Himo and Kálmán J. Szabó
DOI: 10.1039/C4SC00415A

Cobaltate anion couples terminal dienes with trifluoroacetic anhydride: a direct fluoroacylation of 1,3-dienes
Benjamin L. Kohn and Tomislav Rovis
DOI: 10.1039/C4SC00743C

Phosphorescent nematic hydrogels and chromonic mesophases driven by intra- and intermolecular interactions of bridged dinuclear cyclometalated platinum(II) complexes
Xin-Shan Xiao, Wei Lu and Chi-Ming Che
DOI: 10.1039/C4SC00143E


Chemical Science is the Royal Society of Chemistry’s flagship journal; publishing research articles of exceptional significance and high-impact reviews from across the chemical sciences. The journal’s latest (2013) Impact Factor is 8.6. Research in Chemical Science is not only of the highest quality but also has excellent visibility; this is reflected in our latest citation profile.

Chemical Science is moving to Gold Open Access from Issue 1, 2015. It will be the world’s first high-quality Open Access chemistry journal.

Submit your exceptional research to Chemical Science today!

Stay up to date with Chemical Science
Be among the first to hear about the newest articles being published – Sign-up to our journal news alert to receive information about most read articles, themed issues, journal news, as well as calls for papers and invitations.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Chemical Science articles for September

All of the referee-recommended articles below are free to access until 15th October 2014

Understanding nano-impacts: impact times and near-wall hindered diffusion
Enno Kätelhön and Richard G. Compton  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC02288B, Edge Article


Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)
Wendy L. Queen, Matthew R. Hudson, Eric D. Bloch, Jarad A. Mason, Miguel I. Gonzalez, Jason S. Lee, David Gygi, Joshua D. Howe, Kyuho Lee, Tamim A. Darwish, Michael James, Vanessa K. Peterson, Simon J. Teat, Berend Smit, Jeffrey B. Neaton, Jeffrey R. Long and Craig M. Brown  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC02064B, Edge Article


Bifunctional nanoparticle–SILP catalysts (NPs@SILP) for the selective deoxygenation of biomass substrates
Kylie L. Luska, Jennifer Julis, Eli Stavitski, Dmitri N. Zakharov, Alina Adams and Walter Leitner  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC02033B, Edge Article


End functional ROMP polymers via degradation of a ruthenium Fischer type carbene
Amit A. Nagarkar and Andreas F. M. Kilbinger  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC02242D, Edge Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Do molecules behave like people in a crowd?

If you have ever been stuck in a crowd, you may have noticed that your range of motion and the speed at which you can move is highly dependent not only on whether you are leaving a sports game or a pop concert, but also on where you are positioned in the mass of people. The same is true of a solution of molecules – the molecules that are located in the bulk of the solution would be expected to have different properties from those that are surface-immobilised. This is especially true if we consider the supramolecular association of a guest within a host, where thermodynamics and kinetics play an important role in whether a complex will form or not.

Pablo Ballester and his team from the Institute of Chemical Research of Catalonia (ICIQ) set out to study this phenomenon and prove whether or not there was a difference in the binding of a guest, pyridine N-oxide derivatives, with a host molecule, α,α,α,α-calix[4]pyrrole, in bulk solution or tethered to a gold surface. To achieve this goal, the team employed a surface plasmon resonance (SPR) technique, a technique that is sensitive to the accumulation or release of mass, and has been used previously to study large biomolecular systems in real time.

The binding of calix[4]pyrrole to guests immobolised on a surface is, kinetically, slower than in bulk solution

It was found that thermodynamically, binding events between two molecules are similar in bulk solution and at an interface. This is perhaps not surprising, as the changes in enthalpy and entropy to a calix[4]pyrrole in bulk solution or tethered to a surface will be similar; therefore so too will be the binding event. Differences were observed, however, when considering the kinetic aspect of binding, such that binding was much slower when the molecule was on a surface than when it was in bulk solution. This was attributed to the presence of a matrix hindering the motion of the surface-bound calix[4]pyrrole, thereby providing a barrier to complexation.

This work presents an interesting method of studying the binding events that occur in the different regions of a solution. It also shows that the events that occur on the macroscale, such as in a crowd of people, can, in some cases, be analogous to those that occur on the molecular level.

Read this HOT ChemSci article in full!

Binding of calix[4]pyrroles to pyridine N-oxides probed with surface plasmon resonance
Louis Adriaenssens, Josep Lluís Acero Sánchez, Xavier Barril, Ciara K. O’Sullivan and Pablo Ballester
Chem. Sci., 2014, Edge Article
DOI: 10.1039/C4SC01745E

Biography

Anthea Blackburn is a guest web writer for Chemical Science. Anthea is a graduate student hailing from New Zealand, studying at Northwestern University in the US under the tutelage of Prof. Fraser Stoddart (a Scot), where she is exploiting supramolecular chemistry to develop multidimensional systems and study the emergent properties that arise in these superstructures. When time and money allow, she is ambitiously attempting to visit all 50 US states before graduation.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Fluorinating new life into an increasingly ineffective antibiotic

A fluorinated analogue of the naturally occurring aminoglycoside neomycin – well known as an over-the-counter ointment for minor skin abrasions – could lead to a range of much-needed antibiotics in the arms race against aminoglycoside resistant bacteria.

Aminoglycosides have proven indispensable in the treatment of hospital acquired bacterial infections that are particularly difficult to fight in patients suffering from cystic fibrosis and immunodeficiency related illnesses. By binding tightly to a bacterium’s ribosomal RNA (rRNA) in a position known as the A-site, the aminoglycosides disrupt the biosynthesis of proteins necessary for growth, resulting in the bacterium’s death.


Read the full article in Chemistry World»

Read the original journal article in ChemComm – it’s free to access until 16th September:
Synthesis, broad spectrum antibacterial activity, and X-ray co-crystal structure of the decoding bacterial ribosomal A-site with 4′-deoxy-4′-fluoro neomycin analogs

S. Hanessian, O. M. Saavedra, M. A. Vilchis-Reyes, J. P. Maianti, H. Kanazawa, P. Dozzo, R. D. Matias, A. Serio and J. Kondo
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC01626B, Edge Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Chemical Science articles for August

All of the referee-recommended articles below are free to access until 19th September 2014

Enhancing-effect of gold nanoparticles on DNA strand displacement amplifications and their application to an isothermal telomerase assay
Leilei Tian, Timothy M. Cronin and Yossi Weizmann  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC01393J, Edge Article


Asymmetric synthesis of N,O-heterocycles via enantioselective iridium-catalysed intramolecular allylic amidation
Depeng Zhao, Martín Fañanás-Mastral, Mu-Chieh Chang, Edwin Otten and Ben L. Feringa 
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC01940G, Edge Article


pH-dependent binding of guests in the cavity of a polyhedral coordination cage: reversible uptake and release of drug molecules
William Cullen, Simon Turega, Christopher A. Hunter and Michael D. Ward  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC02090A, Edge Article


Mass preparation of high-quality graphene from glucose and ferric chloride
Binbin Zhang, Jinliang Song, Guanying Yang and Prof. Buxing Han  
Chem. Sci., 2014, Accepted Manuscript
DOI: 10.1039/C4SC01950D, Edge Article

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Photoredox route to medically-important heterocycles

Researchers in the US have developed a new photocatalysed coupling reaction that could provide a pathway to a huge number of biologically active compounds.

The coupling mechanism uses chloroheteroarenes in the direct α-arylation of amines

Heterocycles and heteroaromatic compounds are of great interest to medicinal chemists, due to their widespread use in pharmaceuticals. They are able to increase the aqueous solubility and decrease the lipophilicity of drugs, as well as improving their potency and biocompatibility.


Read the full article in Chemistry World»

Read the original journal article in Chemical Science – it’s free to access until 24th September:
Amine α-Heteroarylation via Photoredox Catalysis: A Homolytic Aromatic Substitution Pathway

David W. C. MacMillan and Christopher K Prier  
Chem. Sci., 2014, Accepted Manuscript, DOI: 10.1039/C4SC02155J, Edge Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Uranium complexes unlock feedstock potential of carbon dioxide

European scientists have synthesised uranium complexes that take them a step closer to producing commodity chemicals from carbon dioxide.

Widespread fossil fuel depletion and concerns over levels of climatic carbon dioxide are motivating research to convert this small molecule into value-added chemicals. Organometallic uranium complexes have successfully activated various small molecules before. However, there were no reports of an actinide metal complex that could reductively couple with carbon dioxide to give a segment made from two carbon dioxide molecules – an oxalate dianion.


Read the full article in Chemistry World»

Read the original journal article in Chemical Science – it’s free to access until 3rd September:
Controlling selectivity in the reductive activation of CO2 by mixed sandwich uranium(III) complexes
Nikolaos Tsoureas, Ludovic Castro, Alexander F. R. Kilpatrick, F. Geoffey N. Cloke and Laurent Maron  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC01401D, Edge Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer changes colour in the heat of the moment

Scientists in China, the UK and the Netherlands have engineered a polydiacetylene polymer that reversibly changes colour within 1 second of being heated or cooled

Thermochromic polymers have a wide range of potential uses, from biological sensors to smart windows. However, the irregular structure and weak molecular interactions in established thermochromic polymers results in long response times, slow reversibility and a narrow working temperature range. 

The peptide linkers are stable, while the conjugated bonds within the alkyl chain undergo a reversible conformational transition

 


 

Read the full article in Chemistry World» 

Read the original journal article in Chemical Science – it’s free to access until 28th August:
Ultrafast and Reversible Thermochromism of Conjugated Polymer Material Based on Assembling of Peptide Amphiphiles
Zhengzhong Shao, Hui Guo, Jinming Zhang, David Porter, Huisheng Peng, Dennis Lowik, Yu Wang, Zhidong Zhang and Xin Chen  
Chem. Sci., 2014, Accepted Manuscript
DOI: 10.1039/C4SC01696C, Edge Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Chemical Science articles for July

All of the referee-recommended articles below are free to access until 20th August 2014

Aqueous photoinduced living/controlled polymerization: tailoring for bioconjugation
Jiangtao Xu, Kenward Jung, Nathaniel Alan Corrigan and Cyrille Boyer  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC01309C, Edge Article


Electric field control of the optical properties in magnetic mixed-valence molecules
Andrew Palii, Juan M. Clemente-Juan, Boris Tsukerblat and Eugenio Coronado  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC01056F, Edge Article


Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions
José G. Hernández, Ian S. Butler and Tomislav Friščić  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC01252F, Edge Article


Non-equilibrium transition state rate theory
Haidong Feng, Kun Zhang and Jin Wang  
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC00831F, Edge Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lighting Up the Polymer World, Reversibly

Fluorescent imaging is one of the most useful techniques in modern day medicine, as it provides us with a method of visualizing the inside of a body to allow for diagnosis and treatment of disease. Typically, an organic fluorophore is attached to a biomolecule that, upon introduction to the body, is able to interact with a specific type of molecule in the body, such as a cancerous cell or a molecule that carries out a particular and important function. More recently, in addition to the use of biomolecules, fluorescent labeling has turned to the polymer world for applications in targeted drug delivery or cell patterning to name but a few examples. Fluorescence becomes important in these applications, as the introduction of non-biological molecules to the body requires a method of locating them to track and monitor their activity.

There are a number of methods of introducing organic fluorophores to polymers, for example, polymerization of fluorescently labeled monomer units, end-group attachment, or post-synthetic modification, all of which offer advantages and disadvantages. The one factor that all of these approaches have in common however, is that one needs to beware of how the attachment of fluorophores, which are typically large, will change the chemistry of the polymer. It would therefore be advantageous if small, yet fluorescent, groups could be attached to polymers without otherwise changing their properties.

It is this interest in synthesising fluorescent polymers using small molecules that Mathew Robin and Rachel O’Reilly from the University of Warwick sought to tackle. They were able to demonstrate that the introduction of dithiomaleimide functional groups, which have a large Stokes shift (250 nm) and bright emission, to acrylate or methacrylate polymers did not change the properties of the polymer itself. Perhaps even more interestingly is that it was demonstrated that the functional groups could be introduced both pre-synthetically and post-synthetically. In this way, polymer fluorescence could be both turned on in a profluorescent polymer that contained a reactive dibromomaleimide monomer unit, as well as reversibly turned off through a dithiol exchange reaction to a non-fluorescent dithiomaleimide monomer unit.

The development of a relatively simple system whose fluorescence can be reversible turned on and off is an exciting step forward in developing polymers, especially since the end groups of this functionalised polymer allows for its further incorporation into more complex polymeric systems. These polymers could have applications in not only the biomedical uses discussed, but also in a numerous other applications such as organic electronic devices, sensing materials and polymer materials like nanoparticles and hydrogels.

Read this HOT Chemical Science Edge article in full for free*!

Fluorescent and chemico-fluorescent responsive polymers from dithiomaleimide and dibromomaleimide functional monomers

Mathew P. Robin and Rachel K. O’Reilly
Chem. Sci.20145, 2717.
DOI: 10.1039/C4SC00753K, Edge Article

About the Writer

Anthea Blackburn is a guest web writer for Chemical Science. Anthea is a graduate student hailing from New Zealand, studying at Northwestern University in the US under the tutelage of Prof. Fraser Stoddart (a Scot), where she is exploiting supramolecular chemistry to develop multidimensional systems and study the emergent properties that arise in these superstructures. When time and money allow, she is ambitiously attempting to visit all 50 US states before graduation.

*Access is free untill 08.08.14 through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)