Molecular Switches from DNA

The idea of using DNA-based devices to create highly specific sensors, diagnostic tools, and therapeutics has inspired widespread research. DNA molecular switches, a basic class of DNA nanostructures, turn some process on and off depending on whether a substrate binds to the switch. They are typically coupled with some form of signal amplification process to increase sensitivity and should theoretically provide enhanced signal-to-noise. Unfortunately, current amplification procedures have a significant amount of background reactions, called leakage, that limit their current utility. One approach to design better switches is to find ways to observe single molecule dynamics. Combining transient binding of complimentary oligonucleotides with high resolution fluorescence microscopy allows for the development of highly sensitive molecular switches without leakage problems.

To do this, researchers in China developed a series of three-way junction DNA-based molecular switches. These TWJs possess a recognition domain, which interacts with the target of interest and induces a structural change in the TWJ, and a transduction domain, which then becomes accessible and binds to a fluorescent molecule (Figure 1).

Figure 1. General scheme of three-way junction molecular switch with two domains noted.

Experimentally, the TWJs were captured on the imaging surface and only fluorophores bound to a TWJ would remain in place long enough for signal to be acquired by the camera with a 500 ms integration time. The researchers found that shorter transduction domains with 5 or fewer base pairs were not stable enough to allow the fluorescent probes access in the absence of a bound target. The next generation of TWJs feature a hybridization probe to allow the switch to recognize specific DNA inputs. In the presence of inputs, the researchers observed transient binding behavior of the fluorophore, whereas they observed only nonspecific binding in the absence of inputs. The ability to differentiate between non-specific and transient binding in the single-molecule system gives a detection limit of 10 fM without concerns about leakage.

Building on this work, the researchers utilized the same general framework and substituted aptamer sequences for the hybridization probe in the recognition domain. They utilized split aptamer fragments that only draw together when bound to a target molecule. This motif was tested on ATP, a small molecule, and thrombin, a protein. These aptamer-coupled TWJs exhibited sensitivity to concentrations as low as 20 – 50 pm with high sensitivity (Figure 2). In the presence of molecular analogs to ATP or thrombin, the signal level showed no significant difference from that of a blank.

Figure 2. A) Split aptamer-based molecular switch schematic. B) Single-molecule fluorescence-time trajectory data in the presence (top) or absence (bottom) of targets. C) and D) Linear relationship between thrombin concentration and signal and specificity when compared to analogs. E) and F) Linear relationship between ATP concentration and signal and specificity when compared to analogs.

Another advantage of this system is its ability to provide information on the binding affinity of substrates, as it should impact the kinetics of the fluorescent probes. The dwell times of the fluorescence on and off states demonstrated exponential trends with changing input concentrations and could be fit to extract time constants. These time constants can then be used to derive the kinetics parameters and binding affinities of the target species. The general stability of the molecular switch framework allows for studying these types of interactions in a range of pH and salinity conditions, useful for mimicking different environments relevant to future applications. This provides a platform for studying the fundamental interactions that will allow DNA-based nanotechnology to move forward.

To find out more, please read:

Single-molecule dynamic DNA junctions for engineering robust molecular switches

Shuang Cai, Yingnan Deng, Shengnan Fu, Junjie Li, Changyuan Yu and Xin Su

Chem. Sci., 2019, 10, 9922-9927.

About the blogger:

Beth Mundy is a PhD candidate in chemistry in the Cossairt lab at the University of Washington in Seattle, Washington. Her research focuses on developing new and better ways to synthesize nanomaterials for energy applications. She is often spotted knitting in seminars or with her nose in a good book. You can find her on Twitter at @BethMundySci.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT Chemical Science articles for October

We are happy to present a selection of our HOT articles for October. To see all of our HOT referee-recommended articles from 2019, please find the collection here.

As always, Chemical Science articles are free to access.

Development of a DUB-selective fluorogenic substrate

ChemSci., 2019, 10, 10290-10296

 

_________________________________________________________________

Facile triflic acid-catalyzed α-1,2-cis-thio glycosylations: scope and application to the synthesis of S-linked oligosaccharides, glycolipids, sublancin glycopeptides, and TN/TF antigens

Sanyong Zhu, Ganesh Samala, Eric T. Sletten, Jennifer L. Stockdill and Hien M. Nguyen

ChemSci., 2019, 10, 10475 – 10480

 

_________________________________________________________________

Preferential binding of unsaturated hydrocarbons in aryl-bisimidazolium·cucurbit[8]uril complexes furbishes evidence for small-molecule π–π interactions

Steven J. Barrow, Khaleel I. Assaf, Aniello Palma, Werner M. Nau and Oren A. Scherman

ChemSci., 2019, 10, 10240 – 10246

_________________________________________________________________

Synthesis of bicyclo[3.1.0]hexanes by (3 + 2) annulation of cyclopropenes with aminocyclopropanes

Bastian Muriel, Alec Gagnebina and Jerome Waser

ChemSci., 2019, Advance Article

_________________________________________________________________

Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor

Turner D. Newton and Michael D. Pluth

ChemSci.,  2019, Advance Article

_________________________________________________________________

Ruthenium based antimicrobial theranostics – using nanoscopy to identify therapeutic targets and resistance mechanisms in Staphylococcus aureus

Kirsty L. Smitten, Simon D. Fairbanks, Craig C. Robertson, Jorge Bernardino de la Serna, Simon J. Foster and Jim A. Thomas

ChemSci.,  2019, Advance Article

_________________________________________________________________

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Metallohelices to kill microbes

I feel pretty safe saying that the development of effective antimicrobial drugs (looking at you penicillin!) was one of the most significant pharmacological events of recent history. Unfortunately, the widespread and often indiscriminate use of antibiotics has created an environment where bacteria with evolved drug resistances, colloquially known as “superbugs,” pose a serious threat to global health. While development of new small-molecule antimicrobial drugs is still ongoing, scientists are exploring alternative approaches as well. Of interest are antimicrobial peptides, found in plants and animals as a part of native immune systems. The most common are cationic antimicrobial peptides (CAMPs) comprised of 10-50 amino acids that possess both cationic and hydrophobic subunits and an overall positive charge. This allows them to strongly electrostatically interact with negatively charged bacterial cell membranes without disrupting neutral animal cells. Unfortunately, CAMPs have proved challenging to commercialize with generally unfavorable activities and issues with large-scale manufacture.

Figure 1. General synthetic scheme, structure, and key for components of metallohelices.

Researchers in the UK and Czech Republic recently developed a range of cationic metallohelices (Figure 1) that demonstrate structure-dependent activity against both Gram-positive and -negative bacteria. The diamine ligands form cleanly in the presence of [15]-crown-[5] and upon combination with 2-pyridinecarboxaldehyde and a metal salt self-assemble into the iron or zinc metallohelices. The metallohelices consist of a single enantiomer, as the ligands are optically pure, as determined by NMR and single-crystal X-ray diffraction when possible. Altering the aryl linker unit in the ligand the overall size and shape of the metallohelix in both zinc and iron derivatives. The iron metallohelices are water compatible, with lifetimes exceeding 10 days even in highly acidic conditions, and thus suitable for antimicrobial activity screening.

The researchers used ­in vitro studies to find minimum inhibitory concentrations (MICs), the lowest concentration necessary to see bacterial growth inhibition. While the metallohelices demonstrate the highest activity towards Gram-positive bacteria, some showed lethal effects on Gram-negative E. coli in 20-40 minutes. The 5b helices with a para-benzene bridging group acted most selectively on E. coli with the Λ-5b enantiomer acting as the champion compound and selected for further mechanistic study. The researchers exposed a notorious E. coli strain to inhibitory levels of Λ-5b in an attempt to isolate resistant mutants. The 17 isolates showed only slight tolerance increases rather than true resistance and could be classified into 4 genetic sub-types. Two of the sub-types developed mutations that altered the biophysical properties of their outer membrane, a third lost the ability to produce the vitamin B12 transporter protein, and the fourth lost the pO157 virulence plasmid (which makes this particularly E. coli strain particularly unpleasant). Taken in concert, these 4 sub-types show that tolerance can be derived from disrupting the ability of Λ-5b to interact with and cross the cellular membrane.

Figure 2. Fluorescence images of cells treated with Λ-5b coupled to a fluorescent probe, with arrows pointing to the localization of Λ-5b.

Given data suggesting the ability of Λ-5b to cross the cellular membrane, despite the relatively large of the metallohelices, the researchers used fluorescence microscopy to probe Λ-5b localization by coupling Λ-5b with a fluorescent label. The labeled metallohelix preferentially localized to regions in growing cells that contain anionic phospholipids (Figure 2). This indicates that Λ-5b can cross the cellular membrane and acts internally to the cell rather than simply acting via electrostatic interaction that disrupts the membrane. Overall, this work provides an exciting approach to developing novel anti-microbial drugs that mimic CAMPs with higher stability, activity, and easier synthesis.

To find out more please read:

Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways

Daniel H. Simpson, Alexia Hapeshi, Nicola J. Rogers, Viktor Brabec, Guy J. Clarkson, David J. Fox, Ondrej Hrabina, Gemma L. Kay, Andrew K. King, Jaroslav Malina, Andrew D. Millard, John Moat, David I. Roper, Hualong Song, Nicholas R. Waterfield and Peter Scott

Chem. Sci., 2019,10, 8547-8557

About the blogger:

Beth Mundy is a PhD candidate in chemistry in the Cossairt lab at the University of Washington in Seattle, Washington. Her research focuses on developing new and better ways to synthesize nanomaterials for energy applications. She is often spotted knitting in seminars or with her nose in a good book. You can find her on Twitter at @BethMundySci.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

1st International Conference on Noncovalent Interactions

Last month, Chemical Science sponsored the 1st International Conference on Noncovalent Interactions, in Lisbon, Portugal. The talks highlighted the important role of noncovalent interactions in a range of disciplines, such as theoretical chemistry, synthesis, catalysis, crystal engineering, molecular recognition, medicinal chemistry, biology, materials science, and electrochemical immobilization.

Chemical Science, along with Dalton Transactions and RSC Advances, sponsored poster prizes at the conference. Congratulations to Anh Tuan Pham (University of Geneva, Switzerland) who received the Chemical Science poster prize, Sara R. G. Fernandes (University of Lisbon, Portugal) who received the Dalton Transactions poster prize, and Errui Li (Zhejiang University, China) who received the RSC Advances poster prize. There was a fantastic array of posters on display at the meeting, and we would like to extend a huge congratulations to all those who presented.

       

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Driving Molecular Motors with Visible Light

While nanobots are still a thing of science fiction, the development of the fundamental scientific concepts that could lead to highly complex molecular-scale machines has been an active area of research for over 2 decades. Molecular motors rely on isomerization through metastable intermediate states that leads to unidirectional rotation via a rotor portion of the molecule. Initial work utilized molecules that convert high-energy UV-light into this directional motion. However, these systems are limited in their future utility, particularly in biological applications, if they need UV-light for activation. Recent work focuses on driving molecular motors with visible light via a range of approaches, including altering the absorbance profile of the motor molecule itself. Unfortunately, changing the electronics of the molecule has previously substantially decreased the quantum yield while resulting in only slight red shifts.

Researchers in The Netherlands recently developed 2nd generation molecular motors featuring a mixture of electron-donating and electron-withdrawing groups that exhibit substantial red-shifts. Density functional theory (DFT) calculations predicted that adding cyano- and methoxy- groups to opposite halves of the motor would shift the absorbance past 410 nm. The new molecules were synthesized via a general procedure shown in Figure 1, with yields ranging from 3 – 10%.

Figure 1. General synthetic route to cyano- and methoxy- substituted molecular motors and photoisomerization reaction that results in unidirectional motion.

The addition of the cyano- and methoxy- groups shifted the absorbance maxima corresponding to the HOMO-LUMO transitions to from 422 – 453 nm, an increase of over 60 nm from the parent molecule. When irradiated, the molecules transitioned from their stable ground state to the metastable isomers. These were characterized by UV-Vis spectroscopy, with the emergence of further red-shifted features (Figure 2), and 1H NMR.  The 1H NMR spectra were obtained with in-situ irradiation (which sounds like a sweet experimental setup) at various wavelengths and the ratios of several specific protons on the rotor. The derivative 2 with a methoxy- group on the rotor and cyano- groups on the stator demonstrated activity with irradiation at wavelengths up to 530 nm.

Figure 2. UV-Vis absorption spectra of stable (solid) and metastable (dashed) isomers of the molecular motors.

The energy of activation of the rotation for all three derivatives was determined by Eyring analysis and corroborated by DFT calculations. All were around 90 kJ/mol, with 2 requiring the most energy to elongate the central alkene bond and isomerize. The quantum yields of the motors for the forward reaction range from 5.8 – 11.5%, comparable to state-of-the-art UV absorbing motors. The quantum yields for the back reactions were calculated to be significantly lower than those for the forward reaction, which corresponds to the excess of metastable isomers observed under active irradiation. These motors also exhibit high photostability, with no significant change in the ground state absorbance after irradiation and cycling. This is promising for smart materials applications where stability is crucial. This work pushes forward the design of molecular motor systems that utilize visible rather than UV light.

To find out more please read:

Photoefficient 2nd generation molecular motors responsive to visible light

Lukas Pfeifer, Maximilian Scherübl, Maximilian Fellert, Wojciech Danowski, Jinling Cheng, Jasper Pol and Ben L. Feringa

Chem. Sci., 2019, 10, 8768-8773.

About the blogger:

Beth Mundy is a PhD candidate in chemistry in the Cossairt lab at the University of Washington in Seattle, Washington. Her research focuses on developing new and better ways to synthesize nanomaterials for energy applications. She is often spotted knitting in seminars or with her nose in a good book. You can find her on Twitter at @BethMundySci.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Can Al3+ Indeed Intercalate Layered Metal Oxides in Aqueous Electrolytes?

Intercalation of multivalent ions, e.g., Al3+, has received increasing attention as an energy-boosting strategy for rechargeable batteries. The charge storage process of the wide-spread Li-ion batteries relies on Li+ intercalating electrodes with layered structures. Multivalent-ion batteries could accommodate more charges than Li-ion batteries because their ions carry more charge than Li+. This concept, however, has now been challenged by a research team led by BenoÎt Limoges and Véronique Balland of Université de Paris, France. Their mechanistic investigation, published in Chemical Science, revealed that Al3+ ions were unable to intercalate electrodes in aqueous electrolytes.

The authors selected TiO2 arrays as the object of their study. These ~1 µm-high arrays were grown using the glancing angle deposition technique. By applying negative potentials to the TiO2 arrays, cations such as Al3+ could diffuse through the inter-array slits and interact with TiO2 (Figure 1).

Figure 1. Structure of the TiO2 arrays. (left) Scanning electron micrographs and (right) a cartoon illustrating ion diffusion pathways.

Electrochemistry tests elucidated that the charge-storage process of TiO2 in an Al3+-containing aqueous electrolyte correlated to proton intercalation. This conclusion was mainly based on the nearly identical cyclic voltammograms (Figure 2, top) and capacity vs. potential curves (Figure 2, bottom) of the TiO2 arrays in both AlCl3 and acetic acid aqueous electrolytes. Since acetic acid solution had no Al3+, the observed charge-storage activity could not be attributed to Al3+ intercalation. Instead, the authors argued that protons dissociated either from hydrated Al3+ cations, [Al(H2O)6]3+ or acetic acid must intercalate TiO2 and result in the observed charge-storage capacities.

Figure 2. (top) Cyclic voltammograms and (bottom) capacity vs. potential curves of TiO2 in (left) Al3+-containing and (right) acetic acid aqueous electrolytes. The electrolytes are 0.3 M KCl with different concentrations of AlCl3 or acetic acid: 0 M (black), 25 mM (blue), 50 mM (purple), 100 mM (magenta), and 250 mM (red).

The authors believe that the misconception of Al3+ intercalation is due to the overlooking of Al3+ hydration, which is inevitable when Al3+ is present in aqueous electrolytes. Removing the water shell (a prerequisite for ion intercalation) is energy costly for Al3+ because of the strong binding force between water molecules and Al3+. Additionally, even if Al3+ ions intercalate TiO2, their movement is strongly hindered by Coulombic interactions within the TiO2 lattice. The immobilized intercalated ions would then block other ions from entering the TiO2 lattice. Together, both factors prevent Al3+ from intercalating into TiO2.

In summary, this work demonstrates that the charge-storage capacity of TiO2 in Al3+-containing aqueous electrolytes is most probably due to proton intercalation. This conclusion also applies to other multivalent cations, including Zn2+ and Mn2+, as shown in this work.

 

To find out more, please read:

On the Unsuspected Role of Multivalent Metal Ions on the Charge Storage of A Metal Oxide Electrode in Mild Aqueous Electrolytes

Yee-Seul Kim, Kenneth D. Harris, BenoÎt Limoges, and Véronique Balland

Chem. Sci., 2019, doi: 10.1039/c9sc02397f

Tianyu Liu acknowledges Zachary L. Croft of Virginia Tech, the U.S., for his constructive comments on this post.

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about the communication of scientific endeavors and cutting-edge research to both the general public and other scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

10th National Conference on Inorganic Chemistry of the Chinese Chemical Society

Chemical Science was pleased to support the 10th National Conference on Inorganic Chemistry of the Chinese Chemical Society which took place at Shandong University last month. Poster prizes were given on behalf of Chemical Science as well as Inorganic Chemistry Frontiers, Materials Chemistry Frontiers, Catalysis Science & Technology, Physical Chemistry Chemical Physics, Green Chemistry, Dalton Transactions, RSC Advances, Nanoscale, Nanoscale Advances, Materials Horizons and Journal of Materials Chemistry A, B and C. Energy & Environmental Science and Sustainable Energy & Fuels also provided a joint prize. The winners are:

Poster prize winners of the 10th National Conference on Inorganic Chemistry of the Chinese Chemical Society

Yuan Xiong 熊昱安 东南大学
Southeast University
Lingling Xu 徐令令 西安交通大学
Xi’an Jiaotong University
Fan Guo 郭帆 南京大学
Nanjing University
Wenbin Wang 王文彬 华中科技大学
Huazhong University of Science and Technology
Mengfei Li 李梦菲 中国石油大学(华东)
China University Of Petroleum
Jing Dong 董婧 北京理工大学
Beijing Institute Of Technology
Bingqi Han 韩冰琪 吉林大学
Jilin University
Wenzhu Yu 于文竹 山东大学
Shandong University
Liang Zhou 周亮 北京大学
Peking University
Genfeng Feng 冯根锋 南京大学
Nanjing University
Peipei Cui 崔培培 德州学院
Dezhou University
Xiaoting Liu 刘晓婷 南开大学
Nankai University
Dong Li 李冬 厦门大学
Xiamen University
Zhi Wang 王芝 山东大学
Shandong University
Shuang Liu 刘爽 东北师范大学
Northeast Normal University

Congratulations to all the winners!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Breaking C-H bonds with water, iron, and electricity

As we transition to an energy future composed primarily of intermittent, renewable technologies, finding ways to store the excess generated charges will be critical. While the general public typically thinks of batteries, another area of massive interest is storing the electrons in a chemical bond. This can be accomplished by creating electrocatalysts that can couple an electric current with chemicals like water and oxygen to generate stable new bonds in molecules for later use as fuels. These renewably generated fuels would then be available whenever needed, like at night. However, finding efficient electrocatalysts composed of earth-abundant materials has proven challenging. Many researchers have turned to nature for inspiration by designing molecules that mimic the active sites of enzymes.

Researchers in the United States used this approach, focusing on creating high-valent iron-oxo species, which others previously identified as the key catalytic intermediates in multiple enzymatic reactions. These types of species have traditionally been synthesized by reacting a reduced iron complex with an oxygen transfer reagent, but the researchers developed a system to generate highly reactive species using electricity as the reaction driving force and water as the oxygen source. The studied catalyst is a commercially available iron(III)-aquo complex with a tetraamido macrocyclic ligand (TAML) as the ancillary ligand (Figure 1B).

Figure 1. A. Cyclic voltammagram of (TAML)Fe in acetonitrile. B. Structure of (TAML)Fe and cyclic voltammagram showing increased current upon the addition of ethylbenzene.

When analyzed by cyclic voltammetry, an electrochemical technique where you cycle the voltage between set points and measure the current output, the (TAML)Fe shows two redox events at around 650 and 1250 mV that the researchers attributed to generating the FeIV-OH and FeV(O) species (Figure 1). Addition of ethylbenzene, which should react with the FeV species, increased the current at voltages of 1250 mV and higher, indicating (TAML)Fe turnover. However, isolating the Fev(O) species proved challenging as it reacts rapidly with the (TAML)Fe to form an FeIV dimer. This also limits the efficiency of the overall system by decreasing the amount of the most reactive species in solution.

Figure 2. A, B. Products generated by oxidation of various substrates screened with (TAML)Fe for electrocatalysis with isolated yield and calculated conversion in parenthesis. C. Substrates that did not react with the (TAML)Fe complex.

Both the FeIV dimer and FeV(O) species proved capable of oxidizing C-H bonds in ethylbenzene, but the FeV(O) is much more reactive and increases the oxidation rate at high electrochemical potentials. The researchers tested the scope of (TAML)Fe reactivity using a series of compounds with benzylic C-H bonds (Figure 2). They found that the (TAML)Fe performed well with electron-rich and electron-neutral derivatives, with an electron-deficient nitro-substituted derivative showing lower reactivity. Several substrates with non-benzylic C-H bonds showed high selectivity for oxidation at the benzylic C-H bond. (TAML)Fe also showed high electrocatalytic activity for oxidizing alcohols and converted substrates as simple as cyclohexanol and as complex as a steroid to ketones in high yields (up to 97%).

This study of an earth-abundant, stable, and commercially available electrocatalyst acts as a baseline for further studies with other similar metal complexes. Despite the efficiency limits attributed to dimerization, the high stability and selectivity of the (TAML)Fe could lead to its use with a broader range of substrates with varied functional groups.

To find out more please read:

Electrochemical C–H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source

Amit Das, Jordan E. Nutting and Shannon S. Stahl

Chem. Sci., 2019, 10, 7542-7548

About the blogger:

Beth Mundy is a PhD candidate in chemistry in the Cossairt lab at the University of Washington in Seattle, Washington. Her research focuses on developing new and better ways to synthesize nanomaterials for energy applications. She is often spotted knitting in seminars or with her nose in a good book. You can find her on Twitter at @BethMundySci.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

International Conference on Energy Materials and Interfaces

Last month the North East Centre for Energy Materials (NECEM) held the International Conference on Energy Materials and Interfaces in Newcastle, UK, which was sponsored by Chemical Science. The conference covered topics including flexible photovoltaics, thermoelectric devices, computational simulations of interfaces in energy capture devices, applications of 2D materials in energy capture and storage, tailored interfaces in turbines and new conc‌epts in electrical and electrochemical energy storage.

Chemical Science sponsored a poster prize, which was awarded to Stephen Campbell from Northumbria University. RSC journals Energy & Environmental Science and Sustainable Energy & Fuels also awarded poster prizes to David Alejandro Palacios Gomez from Durham Unviersity and Wei-Hsiang Lin from National Tsing Hua University.

Energy & Environmental Science poster prize winner David Alejandro Palacios Gomez, from Durham University

Sustainable Energy & Fuels poster prize winner Wei-Hsiang Lin from National Tsing Hua University

Congratulations to the prize winners from everyone at Chemical Science!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

26th International Symposium: Synthesis in Organic Chemistry

The 26th International Symposium on Synthesis in Organic Chemistry was held in Cambridge last month, showcasing exciting work in this core area of organic chemistry – synthesis. Chemical Science, alongside Organic and Biomolecular Chemistry, was proud to sponsor the event, which included talks covering a variety of aspects of modern synthesis and provided a forum for emerging methodologies and strategies.

The symposium featured talks from researchers working at the cutting-edge of synthesis in organic chemistry, including Chemical Science Associate Editor Vy Dong, Frances Arnold, Shankar Balasubramanian, Tanja Gulder, Robert Knowles, Daniele Leonori, David Nicewicz, Robert Phipps, Tobias Ritter, Tomislav Rovis, Franziska Schoenebeck, Hiroaki Suga, Edward Tate, F Dean Toste, Matthew Tudge, and William Unsworth.

Chemical Science’s Executive Editor, May Copsey, was proud to present the Poster Prizes for the meeting, sponsored by Chemical Science and Organic and Biomolecular Chemistry. Congratulations to Roman Abrams (University of Bristol) and Claire Flitcroft (The University of Sydney) for winning the judge’s choice poster prizes, and to Tobias Wagener (Westfälische Wilhelms-Universität Münster) and Thomas Brouder (University College Cork) for winning the participant’s vote prizes. There was a fantastic array of posters – congratulations to all those who displayed work.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)