Bacteria redefine reinforced concrete

Written by Sarah Brown, web writer for RSC Advances

Let’s talk good bacteria, and I don’t mean the kind in your yoghurt. No, I’m talking the kind in your concrete. Fear not, it is not a new breakfast craze. E. coli-based bioconcrete materials have been around for some time now, imbuing properties that allow cracks in the concrete to heal, improving the strength and durability of this material and also all lovely and green – reducing the overall energy cost and carbon dioxide generated in comparison to conventional processes.

Writing in RSC Advances, Manas Sarkar and co-workers have made the good bacteria even better by taking a gene from a bacterium that survives in hot springs, thriving at around 65 ˚C, amplifying it by PCR and implanting it in E. coli bacteria, engineering a unique strain. The gene in question is a silica leaching gene, which has previously been reported to impart higher compressive strength and durability. They add the gene into E. coli as these bacteria are easy to handle, effective at ambient temperatures and more efficient economically.
Development of an improved E. coli bacterial strain for green and sustainable concrete technology

Concrete samples with the modified bacteria were shown to be 30% stronger than the control, thought to be in part a result of the protein producing a new silicate phase that fills the matrices of micropores in the material.

So, while you may think it a good idea to slather that crack in your ceiling with some probiotic yoghurt from the fridge – stand fast. The smarter bioconcrete is coming.

To find out more, click below to read the full article in RSC Advances.

Development of an improved E. coli bacterial strain for green and sustainable concrete technology
Manas Sarkar, Nurul Alam, Biswadeep Chaudhuri, Brajadulal Chattopadhyay and Saroj Mandal
RSC Adv., 2015, 5, 32175-32182


Sarah Brown Sarah Brown is a guest web-writer for RSC Advances. Sarah hung up her lab coat after finishing her PhD and post-doctorate in nanotechnology for diagnostics and therapeutics and now works in academic publishing. When not trying to explain science through ridiculous analogies, you can often find her crocheting, baking or climbing, but not all at once.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)