Archive for the ‘Paper of the Month’ Category

Paper of the month: Synthesis of disulfide-bridging trehalose polymers for antibody and Fab conjugation using a bis-sulfone ATRP initiator

Forsythe and Maynard present a new strategy for the direct synthesis of disulphide-bridging trehalose polymers using a bis-sulfone ATRP initiator.

Conjugated polymers are often used to enhance the properties of therapeutic molecules such as antibodies and antigen binding fragments (Fabs). In this work, Forsythe and Maynard present a new strategy to prepare polymer-antibody/Fab conjugates by employing bis-sulfone end-groups installed via a functionalized atom transfer radical polymerization initiator. In particular, a bis-sulfone initiator was first synthesized and subsequently subjected to activators generated electron transfer (AGET) polymerization using ascorbic acid as the reducing agent. Upon optimizing the ligand concentration (special care was taken here as an excess of ligand causes a detrimental side reaction which results in broadening of the molecular weight distributions), disulphide-reactive trehalose polymers could be efficiently prepared with controlled molecular weight and fairly low dispersity, thus confirming a controlled polymerization. The polymers were then conjugated to a full Immunoglobulin G and its Fab fragment and the reaction proceeded quantitatively as confirmed by western blot and mass spectrometry. The stability of the resulting conjugates was then assessed by accelerated heat stress studies where the trehalose polymer was found to considerably increase the thermal stability of both Herceptin and Herceptin Fab. Importantly, this new strategy allows for a facile way to synthesize polymeric bioconjugates without the need for time consuming post-polymerization modification methods while also exhibiting very good monomer compatibility. As the authors conclude, they anticipate a continued exploration in the field of antibody and protein conjugation and we look forward to reading the next exciting findings from the Maynard group.

 

Tips/comments directly from the authors:

  • The bis-sulfone functionality is a robust system for the production of protein-polymer conjugates. However, due to its base-sensitivity, care needs to be taken when incorporating it into polymers. Since common ligands for AGET ATRP display reactivity towards the bis-sulfone, both reaction temperature and concentration should be kept low.
  • For performing conjugations using the bis-sulfone, we found it important to do a two-step reduction and alkylation where the reducing agent (DTT) was removed prior to the conjugation. To help avoid re-oxidation of the disulfides during this process, we used a buffer containing EDTA to prevent trace metal-mediated oxidation and additionally used desalting columns that allow for rapid removal of excess DTT.
  • While we demonstrate the applicability of the bis-sulfone initiator for AGET ATRP, the chemistry should be amenable to other controlled polymerizations such as RAFT. Incorporation into a chain transfer agent could further expand the diversity of chemistry available for antibody conjugation.
  • Trehalose polymers stabilized the antibody and Fab to temperature increases. However, the same polymer could also increase the stability of the conjugates in vivo since these polymers have improved the pharmacokinetics of other proteins.

Citation to the paper: Synthesis of disulfide-bridging trehalose polymers for antibody and Fab conjugation using a bis-sulfone ATRP initiator, Polym. Chem., 2021,12, 1217-1223, DOI: 10.1039/D0PY01579B

Link to the paper:

https://pubs.rsc.org/en/content/articlepdf/2021/py/d0py01579b 

 

Athina AnastasakiDr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Digital light processing 3D printing with thiol–acrylate vitrimers

Rossegger et al. present a new transesterification catalyst which can be applied in thiol-acrylate vitrimer systems enabling the fabrication of precise 3D objects.

image describing the work

Vitrimers are a unique class of materials that possess the remarkable property to be thermally processed in a liquid state while maintaining their network integrity. This property is induced owing to various thermo-activated exchange reactions including the catalyzed transesterification of hydroxyl ester moieties. However, the possibility to introduce dynamic covalent bonds into 3D printable photopolymers is challenging and the printed objects often suffer from a range of limitations such as low resolution, poor surface quality and lack of versatility. In addition, conventional transesterification catalysts exhibit poor solubility and present additional compromises on cure rate and pot life of photocurable resins. To this end, Schlögl and co-workers introduced a mono-functional oligomeric methacrylate phosphate as a new and efficient transesterification catalyst. The catalyst has many advantageous characteristics: it is liquid, easily dissolved in a range of acrylic monomers and can be covalently incorporated into the network across its methacrylate group. Once photo-cured, the dynamic thiol-click networks are able to rapidly undergo thermo-activated rearrangements of their network topology as shown by stress relaxation experiments. Importantly, when applied in thiol-acrylate vitrimer systems, precise 3D objects with 500 µm features using bottom-up digital light processing can be obtained. When compared to other commonly employed catalysts, the mono-functional methacrylate phosphate is superior both in terms of solubility and stress relaxation, thus unlocking a new toolbox of photocurable vitrimers.

 

Tips/comments directly from the authors:

  • Owing to their strong Brønsted acidity, organic phosphates are able to catalyze transesterifications in hydroxyl ester networks. They exhibit a better performance in catalyzing exchange reactions in dynamic photopolymers compared to Lewis acids such as Zn(OAc)2.
  • Stress relaxation kinetics increase with rising catalyst content. However, the catalyst content should not exceed 50 mol% as the resin formulation is getting destabilized. Below 50 mol%, the thiol-click resin is stable over several weeks. This is a clear advantage compared to conventional transesterification catalysts, which initiate thiol-Michael reactions and lead to a premature gelation of thiol-click resins.
  • Prior to the shape memory experiments it is important to thermally anneal the networks to form additional crosslink sites by hydrogen bonding, which lead to a change in thermal and mechanical properties. After 4 h at 180 °C, the network properties remain constant and the printed test specimen are able to repeatedly undergo shape changes after the programming step.
  • Organic phosphates are highly versatile transesterification catalysts and can be applied for imparting dynamic network properties in numerous photopolymer systems. Network architecture can be conveniently adjusted by the structure and functionality of the monomers and/or crosslinkers.

 

Citation to the paper: Digital light processing 3D printing with thiol–acrylate vitrimers, Polym. Chem., 2021,12, 639-644, DOI: 10.1039/D0PY01520B

Link to the paper:

https://pubs.rsc.org/en/content/articlepdf/2021/py/d0py01520b

 

Professor Athina AnastasakiDr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Ring opening polymerization of ε-caprolactone through water

Atta et al. demonstrates a simplified ROP protocol which operates in the absence of any inert gas and without the need of drying any of the reaction’s reagents.

image describing the work

Ring Opening Polymerization (ROP) is arguably one of the most popular methodologies to synthesize biodegradable materials such as polycaprolactone (PCL) and poly (lactic acid) (PLA). However, a major drawback of this approach which severely limits its applicability is that it typically operates under completely moisture-free conditions, as water is well-known to deactivate the catalyst and terminate the propagating chains. To avoid water contamination, highly specialized equipment (e.g., Schlenk lines or glove boxes) as well as anhydrous reagents have to be employed which makes the process particularly tedious for both experts and non-experts. To overcome this, Gormley and co-workers have developed two elegant and simple methods that allow for the facile synthesis of PCL through ROP in a laboratory oven and without using any inert gas or dry reagents. In the first technique, a vacuum oven was employed to evaporate water from a traditional ROP reaction with stannous octoate as the catalyst while in the second approach titanium isopropoxide was utilized to simultaneously quench residual water and catalyze ROP. Impressively, and despite the simplicity of those methodologies, a range of chain lengths could be synthesized (degree of polymerization 25-500) with relatively good control over the molecular weight distributions of PCL (Đ < 1.5 for all cases). It is highlighted that a large excess of water impurities (750 ppm) could be tolerated by both methods yielding well-defined polymers at quantitative conversions. This work represents a great example of a simplified ROP which operates in the absence of complicated reactions set ups and can be performed in any laboratory. As the authors also remark, targeting even higher molecular weights or achieving even lower dispersity values will be the next challenge to address and we very much look forward to the next developments by the Gormley group.

Tips/comments directly from the authors:

  • The rational goal of this work is to enable the ROP reaction in an oven without inert gas environment and without drying or purifying the reagents.
  • The most exciting aspect of this work is to enable non-experts to synthesize custom polymers.
  • TTIP plays multiple roles in this ROP reaction. It not only initiates and catalyzes the polymerization reaction but also eliminates water from the reaction medium.
  • It is important for the audience that we should perform this experiment with minimal mixing time (within 1-5 sec) as water present in the air can contaminate CL.
  • The purity of CL can be easily checked by TTIP. A precipitate of TiO2 was formed when the water content of CL was above 750 ppm, and a cloudy solution was observed.

Citation to the paper: Ring opening polymerization of ε-caprolactone through water, Polym. Chem., 2021,12, 159-164, DOI: 10.1039/D0PY01481H

Link to the paper: https://pubs.rsc.org/en/content/articlepdf/2021/py/d0py01481h 

Professor Athina AnastasakiDr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Enzyme-responsive polymeric micelles with fluorescence fabricated through aggregation-induced copolymer self-assembly for anticancer drug delivery

Yan et al. develop new enzyme-responsive polymeric micelles with potential applications in cancer therapy.

image describing the work

One of the most exciting and fast-growing topics in polymer chemistry is the synthesis of amphiphilic copolymers that can self-assemble into nanoparticles. Hydrophobic compounds such as cancer drugs can be encapsulated in the core of these self-assembled nanoparticles, thus protecting them from degradation or unwanted interactions with healthy cells. In addition, advances in polymer end-group functionalization allow the conjugation of special ligands on the nanoparticle surface which are responsible for directing the nanoparticles to cancer cells. Upon reaching the tumours (or being taken up by cancer cells), the nanoparticles must release the encapsulated drugs in order to kill the cancer cells. This drug release step requires the use of stimuli-responsive smart polymers that can switch from hydrophobic to hydrophilic upon exposure to stimuli. Temperature, pH, and enzyme-responsive polymers are therefore developed to release drugs on-demand. In this work, Zhao and co-workers further advance the field by synthesizing new fluorescent nanoparticles which can release a cancer drug (doxorubicin) while simultaneously turning off the fluorescent signal when the drug is released. This was achieved by efficiently coupling a tetraphenylethene moiety onto poly(acrylic acid). The hydrophobic property of the tetraphenylethene moiety induces the self-assembly of the resulting diblock copolymers into fluorescent nanoparticles via an aggregation-induced self-assembly mechanism. Upon exposure of the fluorescent nanoparticles to esterase, this enzyme can hydrolyze the ester bond between the tetraphenylethene side chain and the polymer backbone. The enzyme-catalyzed hydrolysis reaction turns the hydrophobic block back to the water-soluble poly(acrylic acid) block and therefore, disassembles the nanoparticles and also turns the fluorescent signal off. The diblock copolymer has poly(ethylene glycol) as the corona-forming block which possesses negligible toxicity to healthy cells. Therefore, this new copolymer is very promising for drug delivery applications, especially when monitoring the drug release is essential.

Citation to the paper: Visible light enabled para-fluoro-thiol ligation, Polym. Chem., 2020, 11, 7704-7713, DOI: 10.1039/D0PY01328E

Link to the paper: https://pubs.rsc.org/en/content/articlepdf/2020/py/d0py01328e

Professor Athina Anastasaki Dr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Visible light enabled para-fluoro-thiol ligation

Engelke and Truong demonstrate a light-induced para-fluoro-thiol reaction using the photogeneration of a superbase.

 

Graphical abstract for the paper

Post polymerisation modification of macromolecules enables the rapid synthesis of a wide range of polymers with different properties from the same starting material. One promising post polymerisation modification strategy is para-fluoro-thiol reaction (PFTR) which can be further expanded through the use of light as an external stimulus. In this work, Engelke and Truong describe a facile method towards light-enabled PFTR by employing the thioxanthone- 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) salt for light-induced activation of PFTR. The authors exploit this strategy in polymer chemistry by grafting various thiol-containing molecules to a post polymerisation modified backbone and by inducing polymer crosslinking.

The very fast release of DBU under visible light irradiation (blue light, 420 nm) allows for efficient para-fluorothiol ligation which can be used in the synthesis of small thioether molecules. Importantly, this photochemical process could be realized in very high yields (typically >85%) and the product can be easily isolated from the salt by products. The unique aspect of this approach is the temporal control over the photo-induced ligation compared to all other reactions employing photogeneration of a base catalyst, where the reaction continues even when the light is turned off. The PFT ligand could also be initiated by sunlight thus offering for a non-invasive and low-cost technique for the fabrication and modification of complex macromolecular structures. The authors are confident that such strategy mediated by external stimuli will be highly advantageous for soft lithography applications generating micro-and nanosized architectures.

 

 

Tips/comments directly from the authors:

 

1)  Don’t be turned off by the synthesis of the caged DBU.  It’s very straightforward and most of the steps are high yielding. In the step where poly(phosphoric acid) is used, a mechanical stirrer is highly recommended as the mixture can become quite viscous.

2)  The exciting aspect of this work is the efficient uncaging by sunlight which, as an energy source, is non-destructive, low-cost and pollution-free.

3)  Since DBU is a popular organocatalyst for some very important polymerization techniques, such as the ring opening polymerization of lactides and cyclic carbonates, or the polycondensation of isocyanate and polyols. This strategy could be employed for light-mediated polymerization of such monomers, enabling the synthesis of materials that would not be possible to access otherwise.

4)  It was quite fun to see the CO2 bubble (through a cannula) as soon as the light was switched on!

 

Citation to the paper: Visible light enabled para-fluoro-thiol ligation, Polym. Chem., 2020, 11, 7015-7019, DOI: 10.1039/D0PY01373K

Link to the paper: https://pubs.rsc.org/en/content/articlepdf/2020/py/d0py01373k

 

Athina Anastasaki

Dr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Thermoresponsive properties of poly(acrylamide-co-acrylonitrile)-based diblock copolymers synthesized (by PISA) in water

Audureau et al. report the synthesis of UCST-thermoresponsive diblock copolymers using reversible addition-fragmentation chain transfer (RAFT) polymerization in aqueous media.

Image describing the paper

Thermoresponsive polymers have attracted widespread interest in both fundamental research and industrial applications due to their special ability to change properties upon cooling or heating. Polymers exhibiting upper critical solution temperature (UCST) are soluble in a solvent above the UCST but precipitate from the same solvent when cooling below its critical temperature. In the large UCST polymer family, the statistical copolymer poly(acrylamide-co-acrylonitrile) (P(AAm-co-AN)) has gained increasing interest and has been used to prepare nanoparticles for drug delivery, cancer theranostics/chemotherapy and photoacoustic imaging. However, a method for scalable synthesis of thermoresponsive P(AAm-co-AN) block copolymer in water and in-situ self-assembly of the resulting copolymers into nanoparticles remains elusive. In this work, Rieger, Stoffelbach and co-workers employed polymerization-induced self-assembly technique (PISA) to synthesize, for the first time in water, well-defined P(AAm-co-AN) block copolymers which self-assembled into nanoparticles. Importantly, the rare worm-like morphology was successfully obtained, which paves the way for developing better cancer drug delivery systems since nanoworms have distinct and advantageous properties when compared to their spherical counterparts such as long circulation time, high accumulation in tumour and deep tumour penetration. Furthermore, an interesting worm-to-sphere morphological transition was observed upon heating the nanoworms solution. This is in contrast to previous reports where a worm-to-sphere transition was only demonstrated upon cooling and therefore, offers a new promising strategy to design novel smart nanoparticles for various applications.

 

Tips/comments directly from the authors:

 

1)  The thermoresponsive properties of the copolymers crucially depend on the molar fraction of acrylonitrile (FAN) in the P(AAm-co-AN) block, tunable by the initial AN fraction (fAN) in the monomer feed. As AN is volatile, a closed Schlenk system should be used to avoid monomer evaporation during polymerization and produce polymers with predictable properties.

2) P(AAm-co-AN) statistical copolymers exhibited a typical UCST-type thermal transition for acrylonitrile molar fractions (FAN) ranging from 0.3 to 0.5.

3) In addition to FAN, the presence of a hydrophilic PDMAc block and the DPn of the polymer blocks also impact the thermoresponsiveness.

 

Citation to the paper: Thermoresponsive properties of poly(acrylamide-co-acrylonitrile)-based diblock copolymers synthesized (by PISA) in water), Polym. Chem., 2020, 11, 5998-6008, DOI: 10.1039/D0PY00895H. Link to the paper here.

More papers on PISA can be found at our themed collection here!

 

About the web writer:

Professor Athina Anastasaki

Dr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she has joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Single-chain crosslinked polymers via the transesterification of folded polymers: from efficient synthesis to crystallinity control

Terashima and co-workers report efficient synthetic systems of single-chain crosslinked polymers.

 

Crosslinked polymers have emerged as a class of unique materials which find use in a diverse range of applications such as drug delivery, dispersants and coating industries. Typically, those materials are made through a combination of controlled polymerization and crosslinked methods. In this work, Terashima and co-workers prepared a range of single-chain crosslinked polymers with controlled crystallization. This was achieved by the intramolecular transesterification of random copolymers compromising of octadecyl methacrylate, 2-hydroxyethyl methacrylate, and methyl acrylate. Those copolymers were self-folded in organic media (octane was used as the solvent) through the association of the hydroxyl groups to form reverse micelles. Upon synthesis, the micelles were intramolecularly crosslinked by an efficient transesterification of the methyl acrylate units with the hydroxyl groups to produce polymer nanoparticles with pending octadecyl groups. The materials synthesized were thoroughly characterized by a number of techniques including nuclear magnetic resonance, gel permeation chromatography, small angle X-ray scattering and dynamic light scattering. The developed system allowed for the efficient control of the molecular weight of the crosslinked polymers owing to the precise synthesis of the precursors prepared by living radical polymerization. Importantly, the degree of crosslinking was found to control the crystallinity of the products. Last but not least, a relatively high concentration could be used (up to 50 mg ml-1).  As the authors allude to in their conclusion, their work has paved the way to the production of well-defined polymeric nanoparticles that can be employed for surface coating, painting, optical plastics and cosmetics.

 

Tips/comments directly from the authors:

 

1) Intramolecular crosslinking of folded polymers in organic media via transesterification affords the precision and high-throughput synthesis of single-chain crosslinked polymer nanoparticles.

2) The molecular weight of the crosslinked polymers can be controlled as desired at the stage of the synthesis of the precursor polymers by controlled radical polymerization.

3) Transesterification between hydroxyl groups and methyl acrylate units efficiently proceeds within the cores of folded micelles to fix the folded structures in a specific solvent.

4) SEC-MALLS analysis is essential to characterize single-chain crosslinked polymers. Because of the compact structures, the apparent molecular weight of the crosslinked polymers by the general RI detector with PMMA standard calibration turns smaller than that of the non-crosslinked precursor polymers. If the absolute weight-average molecular weight of the crosslinked polymers by the MALLS detector is also close to that of the precursor polymers, you can conclude that the products consist of single chain-crosslinked polymers.

5) Crystallinity of the bulk polymers is controlled by tuning the degree of intramolecular crosslinking. This is an interesting approach to control the thermal and physical properties of solid polymer materials.

Citation to the paper: Single-chain crosslinked polymers via the transesterification of folded polymers: from efficient synthesis to crystallinity control, Polym. Chem., 2020, 11, 5181-5190, doi.org/10.1039/D0PY00758G

Link to the paper: https://pubs.rsc.org/en/content/articlepdf/2020/py/d0py00758g

About the web writer:

Professor Athina Anastasaki

Dr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Sequential and alternating RAFT single unit monomer insertion: model trimers as the guide for discrete oligomer synthesis

Xu and co-workers utilize model trimers as a guide for discrete oligomer synthesis.

 

Image describing the synthesis of sequence-defined polymers from model trimers

Biomacromolecules such as DNA and proteins exhibit perfect sequence precision which allows them to fulfill a number of biological functions. A long-lasting challenge in polymer chemistry is to mimic these biopolymers through synthetic analogues. In particular, single unit monomer insertion technique has emerged as a powerful tool to synthesize sequence-defined polymers with perfect uniformity. Key to this approach is the alternating addition of electron-donor and acceptor monomers which can be utilized to prepare long polymer chains through sequential monomer radical additions occurring one unit at a time. Despite notable progress in the last decades, such alternative and sequential monomer additions often produce complex radical reaction kinetics which makes the formation of diverse polymer sequences challenging. To this end, simplifying reaction processes and establishing simple reaction kinetics is essential to bring a rapid and reliable synthesis. In this work, Xu and co-workers describe a methodology to address this challenge by employing model trimers as a guide for the synthesis of sequence-defined polymers. Central to the design is the sequential and alternating PET-RAFT SUMI technology which enables the acquisition of full kinetic data, thus providing a very useful insight over both reaction rates and yields. Four different families of α,β-disubstituted vinyl monomers (N-phenylmaleimide (PMI), fumaronitrile (FCN) and dimethyl fumarate (DMF) and indene (Ind)) were employed to prepare nine model trimers. These model compounds were subsequently utilized to guide the synthesis of longer discrete polymers (pentamers with diverse monomer sequences) through multiple insertions yielding materials with high isolated yields. The authors’ findings were supported by nuclear magnetic resonance and mass-spectrometry which were used to establish reaction rate and product purity respectively. The authors anticipate that their method can also be applied to other vinyl polymers and different RAFT initiation systems. Such monodispersed materials with perfect sequence control are expected to find use in a range of applications.

 

Tips/comments directly from the authors:

1)  The use of automated flash chromatography can effectively simplify the SUMI product purification and allows for a more efficient and reproducible synthesis.

2) The online-NMR spectroscopy is an effective technique to monitor RAFT agent and monomer conversion in RAFT SUMI.

3)  There are several diastereoisomers for each of SUMI products that would show different polarities in column chromatography and complicated NMR spectra. Careful implementation and thoughtful data analysis are required.

4) The characterization of long chain oligomers (more than four monomer units) is quite challenging. Only mass spectrometry is available for the structure confirmation. Therefore, the model trimers are very important to guide the synthesis of long chain oligomers. All triad sequences in long chain oligomers can be found in the model trimers.

5). The established model trimers and kinetics data could also provide experimental and theoretical guidance for the synthesis of alternating polymers and investigation of mechanism and kinetics of radical copolymerization.

 

Citation to the paper: Sequential and alternating RAFT single unit monomer insertion: model trimers as the guide for discrete oligomer synthesis, Polym. Chem., 2020, 11, 4557-4567, DOI: 10.1039/d0py00390e

 

Link to the paper:

https://pubs.rsc.org/en/content/articlepdf/2020/py/d0py00390e

Read more papers from our Pioneering Investigators 2021 collection here!

About the web writer

Dr. AthinProfessor Athina Anastasakia Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Poly(ethylene glycol)-b-poly(vinyl acetate) block copolymer particles with various morphologies via RAFT/MADIX aqueous emulsion PISA

D’Agosto, Lansalot and co-workers report the synthesis of nanoparticles with various shapes through the RAFT/MADIX PISA polymerization of vinyl acetate.

 

 

Polymerization-induced self-assembly (PISA) is a widely used technique that allows access to the formation of a range of polymeric nanoparticles including spheres, worms and vesicles. Although this methodology has been very successful with dispersion polymerizations, emulsion polymerization systems are mostly limited to the preparation of spherical particles. Poly(vinyl acetate) latexes are obtained by emulsion polymerization and find use in many industrial applications but yet, the preparation of higher ordered morphologies remains challenging. D’Agosto, Lansalot and co-workers were able to circumvent this by conducting the emulsion polymerization of vinyl acetate at higher temperatures anticipating that this would not only lead to much faster reaction kinetics but also to the softening of the polymeric nanoparticles allowing for increased flexibility and rearrangements. Indeed, the aqueous macromolecular design via interchange of xanthate (MADIX)-mediated emulsion polymerization of vinyl acetate from a poly(ethylene glycol) with a xanthate chain-end macro-CTA led to well-controlled polymerizations with high blocking efficiency accompanied with the formation of stable latexes. By judiciously adjusting the targeted degree of polymerization, the authors triggered for the first time the morphological transformation from spherical to higher ordered morphologies and observed the formation of vesicles (with different sizes) as well as worm-like nanoparticles. In particular, the worm-like morphology could alternatively be observed by increasing the solid content from 10 to 15 wt%. The data was supported by very nice cryo-TEM images which depicted all the discussed morphologies. The range of obtained shapes were attributed to the high water solubility of vinyl acetate combined with the low Tg of PVAc. The presented elegant findings enhance our fundamental understanding on emulsion PISA systems where polymerization temperature and solid content significantly affect the resulting morphology.

 

 

Tips/comments directly from the authors:

 

  1. The polymerization takes place above the Tg of the forming PVAc block, which seems to be key for accessing non spherical morphologies in VAc PISA.
  2. PEG-b-PVAc block copolymers are obtained in very short times.
  3. This system provides an interesting medium for investigating the impact of several parameters on the morphologies obtained through PISA processes.
  4. Extension of this strategy to other non-activated monomers, for instance in the copolymerization of vinyl acetate and ethylene, seems accessible.

 

 

Citation to the paper: Poly(ethylene glycol)-b-poly(vinyl acetate) block copolymer particles with various morphologies via RAFT/MADIX aqueous emulsion PISA, Polym. Chem., 2020, 11, 3922-3930, DOI: 10.1039/d0py00467g

 

Link to the paper:

https://pubs.rsc.org/en/content/articlepdf/2020/py/d0py00467g

 

Read more papers on PISA in our Polymerisation-Induced Self Assembly themed collection here!

 

About the web writer:

Professor Athina AnastasakiDr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: A general method to greatly enhance ultrasound-responsiveness for common polymeric assemblies

Dou and co-workers report a new way to improve ultrasound responsiveness in polymeric self-assemblies.

Image describing the work presented

Polymer assemblies or nanoparticles hold great potential to improve diagnosis and treatment of diseases by encapsulating chemotherapeutic or imaging agents with masked toxicity and triggerring release at target sites. To release encapsulated agents, polymer assemblies are often composed of specific stimuli-responsive polymers that can change their properties upon response to external stimuli such as pH, temperature, light, redox, magnetic, and ultrasound. However, this approach limits the components of polymer nanoparticles to stimuli-responsive polymers. In this work, Chen and co-workers elegantly crosslink a common non-responsive diblock copolymer using an ultrasound-responsive crosslinker, followed by the preparation of polymer assemblies that can dissociate under gentle ultrasound treatment. In particular, the photodimerization of coumarin groups under UV irradiation (365 nm) triggered the crosslinking, and a subsequent ultrasound treatment (5 min treatment by the ultrasound of 20-25 kHz at 32.5 W) dissociated the resultant polymer nanoparticles. Interestingly, this strategy could be successfully applied to not only spherical micelles but also worms and vesicles. The use of ultrasound-responsive crosslinker reported in this work paves the way for synthesizing ultrasound-responsive polymer nanoparticles from any block copolymer (not limited to a few ultrasound-responsive copolymers), thus representing a major step forward in the synthesis of smart polymer nanoparticles for biological science and technology.

Read this article for FREE until 15th July!

Citation to the paper: A general method to greatly enhance ultrasound-responsiveness for common polymeric assemblies, Polym. Chem., 2020, 11, 3296-3304, DOI: 10.1039/d0py00254b

You can read the paper here.

About the web writer

Professor Athina AnastasakiDr. Athina Anastasaki is an Editorial Board Member and a Web Writer for Polymer Chemistry. Since January 2019, she joined the Materials Department of ETH Zurich as an Assistant Professor to establish her independent research group.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)