In-Vivo Visualization of Glucose Metabolism with a Two-Color Imaging Technique

A group of scientists from Columbia University in United States have developed a state-of-the-art probing technique that can simultaneously map glucose uptake and incorporation activities in living cells.

Glucose is a ubiquitous “fuel” for most living organisms. Its metabolism, including uptake and incorporation, is vital to sustain the energy consumption of living organisms. Visualization of glucose metabolism is of critical importance for clinical diagnostics and fundamental biological researches. However, current imaging techniques are destructive to living cells, poorly resolved or incapable of probing uptake and incorporation at the same time.

Now in ChemComm, Prof. Min Wei’s research team demonstrates a breakthrough based on a vibrational imaging technique coupled with stimulated Raman scattering microscopy. This technique utilizes two glucose analogues to present the glucose metabolism, the 13C-labelled 3-O-propargyl-D-glucose (3-OPG-13C3) for glucose uptake and the D7-glucose for glucose incorporation. Conventional Raman spectroscopy is unable to distinguish the aforementioned two species due to their overlapping Raman peaks. The authors addressed this challenge by labelling 3-OPG with 13C that exhibits a blue shifted Raman peak, thus separating it from the peak of D7-glucose. Decoupling of the two peaks allows in-vivo imaging and simultaneous observation of glucose uptake and incorporation in cells with sub-cellular resolution.

Figure 1 shows the two-color mapping images collected for human cancer cells, PC-3. The blue (panel a) and red (panel b) areas display the regions where glucose incorporation and uptake are taking place, respectively. The two images can be easily obtained by tuning the wavenumber of the incident light to match with corresponding Raman peak positions. Use of light with other wavenumbers results in the black image (panel c) containing virtually no colored regions, showing the excellent selectivity of the technique. Additionally, this approach differentiates between cancer cells and healthy cells by comparing the blue to red color intensity ratio.

This novel and versatile imaging technique is expected to serve as a useful tool in advanced bio-imaging and future cancer diagnostics.

Figure 1. Two-color mapping images of PC-3 cells highlighting the (a) glucose-incorporation regions (Raman peak: 2133 cm-1) and (b) glucose-uptake regions (Raman peak: 2053 cm-1). (c) An image collected with a wavenumber (2000 cm-1) that does not match with either of the Raman peaks. Scale bar: 20 µm.

 

To find out more please read:

Two-color Vibrational Imaging of Glucose Metabolism Using Stimulated Raman Scattering

Rong Long, Luyuan Zhang, Lingyan Shi, Yihui Shen, Fanghao Hu, Chen Zeng and Wei Min

Chem. Commun. 2018, DOI: 10.1039/C7CC08217G

About the blogger:

Tianyu Liu obtained his Ph.D. in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a web blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Binder-free Integration of Bismuth Nanoflakes onto Nickel Foams for Sodium-ion Batteries

A new type of bismuth-based electrode material for sodium-ion batteries has been synthesized. This electrode consists of bismuth metal nanoflakes seamlessly integrated onto nickel foams. The electrode contains no polymer binders, a crucial component required to retain the structural integrity of most battery electrodes. This binder-free feature improves the amount of charge being stored (i.e. capacity) at fast charging rates.

Sodium-ion batteries are attracting worldwide research efforts as electric energy storage devices, in addition to the prevalent lithium-ion batteries, due to the abundance of sodium. Similar to the preparation of other battery electrodes, fabricating sodium-ion battery electrodes generally requires binders, e.g. polyvinylidene fluoride (PVDF), to hold powdered electrode materials together and glue them to metal supporting substrates. However, the electrically insulating nature of the binders impedes fast electron transport between electrode materials and supporting substrates, consequently degrading the capacity of the batteries at fast charging rates.

Now in ChemComm, researchers from Nankai University & the Collaborative Innovation Center of Chemical Science and Engineering in China demonstrate a bismuth-based electrode material that does not involve a binder. This characteristic is realized by the in-situ growth of bismuth nanoflakes onto nickel foams through a solution-based replacement reaction (Figure 1). Because the nanoflakes grow directly from the nickel foam surface and firmly anchor onto nickel (Figure 2a), the resultant Bi/Ni composite can be directly used as an electrode. Specifically, the bismuth nanoflakes and nickel foam serve as the active material and supporting substrate, respectively.

The Bi/Ni composite exhibited excellent electrochemical performance. It achieved a high capacity of 377.1 mAh/g at a current density of 20 mA/g. Significantly, when the current density increased 100-fold, its capacity could still retain 206.4 mAh/g, which is more than half of the capacity obtained at 20 mA/g (Figure 2b). This outstanding capacity retention is a benefit of the binder-free characteristic that reduces the resistance of electron transport.

The authors then elucidated the working mechanism of the bismuth nanoflakes by in-situ Raman spectroscopy. They concluded that a two-step alloying process was responsible for the charge storage activity.

Figure 1. A schematic illustration showing the synthetic process of the binder-free Bi/Ni electrode. By inserting a piece of nickel foam into an ethylene glycol (EG) solution containing bismuth(III) nitrate, Bi3+ can replace Ni metal, be reduced to Bi metal and deposit on the Ni metal surface.

 

Figure 2. (a) A scanning electron microscopy image of the bismuth nanoflakes. (b) A plot showing the capacity of the Bi/Ni electrode at different current densities.

 

The successful synthesis of the binder-free electrode is expected to encourage future works on the design and synthesis of integrated electrode materials to advance the performance of sodium-ion batteries.

 

To find out more please read:

In situ Synthesis of Bi Nanoflakes on Ni Foam for Sodium-ion Batteries

Liubin Wang, Chenchen Wang, Fujun Li, Fangyi Cheng and Jun Chen

Chem. Commun. 2017, DOI: 10.1039/c7cc08341f

About the blogger:

Tianyu Liu obtained his Ph.D. in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a web blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tactile alternative to colour changes

Many instrument-free analytical methods, such as pH test strips and home pregnancy tests, indicate their results with a colour change. Now scientists in the US have devised a system that outputs a signal you can feel as well as see.

Source: Royal Society of Chemistry
Visual and tactile detection of ATP – gel shapes indicate a positive result.

Read the full story by Jennifer Newton on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Telescope arrangement puts a twist on organic synthesis

Scientists have adapted a technique more commonly used for making crisps and mixing polymers so that it can perform complex multi-component organic reactions in a single step without the need for a solvent.

Source: Royal Society of Chemistry, Laboratory-scale twin screw extruder

Fine chemicals such as drugs, food additives and fragrances are typically made through complex processes with many intricate reaction steps. These steps can be time-consuming and expensive, and often require solvents that are harmful to the environment. But mechanochemistry, where mechanical forces initiate chemical reactions, could side-step such problems.

Read the full story by Thomas Foley on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm poster prize winners at the Pan Africa Chemistry Network Congress

The Pan Africa Chemistry Network (PACN) Congress was held on 7 – 9 November in Accra, Ghana and was attended by approximately 250 researchers and policy-makers.

The PACN Congress is the flagship annual event for the PACN, which seeks to create a self-sustaining science based in Africa, helping to build capacity, solve local challenges and contribute to global knowledge. The topic for this year’s Congress was ‘Sustainable Agriculture: how the chemical sciences can contribute to food security for a growing population’.

ChemComm is proud to have supported the poster prizes for this wonderful event and the 1st prize was awarded to Francis Asiam, from KNUST in Ghana, for his poster entitled ‘Collection, distribution, extraction and characterisation of vegetable oils from 40 varieties of high yielding Allanblackia parviflora in Ghana’. A full list of the poster prize recipients and poster titles can be found below.

Well done to all of the well-deserved winners!

 

PACN Prize 1st place: Francis Asiam (KNUST, Ghana) for ‘Collection, distribution, extraction and characterisation of vegetable oils from 40 varieties of high yielding Allanblackia parviflora in Ghana

PACN Prize 2nd place: EA Asamoah (KNUST, Ghana) for ‘Development of Rabbit Meat Sausages’

PACN Prize, 3rd place: Ray Voegborlo (KNUST, Ghana) for ‘Human Exposure Assessment of Ochratoxin A through consumption of cocoa beans’

Agilent supported prize: Nkechinyere Isienyi (Forestry Research Institute of Nigeria) for ‘Impact of heavy metal on soil near Lapite dumpsite in Ibadan, Nigeria’

Syngenta supported prize: Flaure Essoung (ICIPE, Kenya) for ‘Welwitschianol A and B: Two cyclohexene derivatives and other insecticidal constituents of Caesalpinia Welwitschiana’

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for November

All of the referee-recommended articles below are free to access until 5th January 2018.

Long-wavelength fluorescent boronate probes for the detection and intracellular imaging of peroxynitrite
Adam C. Sedgwick, Hai-Hao Han, Jordan E. Gardiner, Steven D. Bull, Xiao-Peng He and Tony D. James
Chem. Commun., 2017,53, 12822-12825
DOI: 10.1039/C7CC07845E, Communication

____________________________________________________

Towards broad spectrum activity-based glycosidase probes: synthesis and evaluation of deoxygenated cyclophellitol aziridines
Sybrin P. Schröder, Jasper W. van de Sande, Wouter W. Kallemeijn, Chi-Lin Kuo, Marta Artola, Eva J. van Rooden, Jianbing Jiang, Thomas J. M. Beenakker, Bogdan I. Florea, Wendy A. Offen, Gideon J. Davies, Adriaan J. Minnaard, Johannes M. F. G. Aerts, Jeroen D. C. Codée, Gijsbert A. van der Marel and Herman S. Overkleeft
Chem. Commun., 2017,53, 12528-12531
DOI: 10.1039/C7CC07730K, Communication

____________________________________________________

Forged and fashioned for faithfulness—ruthenium olefin metathesis catalysts bearing ammonium tags
Anupam Jana and Karol Grela
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC06535C, Feature article

____________________________________________________

Nanostructured silicon ferromagnet collected by a permanent neodymium magnet
Takahisa Okuno, Stephan Thürmer and Hirofumi Kanoh
Chem. Commun., 2017,53, 12882-12885
DOI: 10.1039/C7CC07372K, Communication

____________________________________________________

Biofilm dispersal using nitric oxide loaded nanoparticles fabricated by photo-PISA: influence of morphology
Zahra Sadrearhami, Jonathan Yeow, Thuy-Khanh Nguyen, Kitty K. K. Ho, Naresh Kumar and Cyrille Boyer
Chem. Commun., 2017,53, 12894-12897
DOI: 10.1039/C7CC07293G, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Emerging Investigator Lectureship – nominations now open!

Know an outstanding emerging scientist who deserves recognition? Nominate now for the 2018 ChemComm Emerging Investigator Lectureship

We are pleased to welcome nominations for the 2018 Emerging Investigator Lectureship for ChemComm.

All nominations must be received by Monday, 19 February 2018.

ChemComm Emerging Investigator Lectureship
• Recognises emerging scientists in the early stages of their independent academic career.
• Eligible nominees should have completed their PhD on or after the 15th September 2009.

Lectureship details
• The recipient of the lectureship will be invited to present a lecture at three different locations over a 12-month period, with at least one of these events taking place at an international conference.
• The recipient will receive a contribution of £1500 towards travel and accommodation costs for their lectures, as well as a certificate.
• The recipient will be asked to contribute a review article for the journal.

How to nominate
Self-nomination is not permitted. Nominators must send the following to the editorial team via 
chemcomm-rsc@rsc.org by Monday, 19 February 2018.
• Recommendation letter, including the name, contact details and website URL of the nominee.
• A one-page CV for the nominee, including a summary of their education, dates of key career achievements, a list of up to five of their top independent publications, total numbers of publications and patents, and other indicators of esteem, together with evidence of career independence.
• A copy of the candidate’s best publication to date (as judged by the nominator).
• Two supporting letters of recommendation from two independent referees. These should not be someone from the same institution or the candidate’s post doc or PhD supervisor.

The nominator and independent referees should comment on the candidate’s presenting skills.

Incomplete nominations or those not adhering to the above requirements will not be considered, and nominees will not be contacted regarding any missing or incorrect documents.

Selection procedure
• The editorial team will screen each nomination for eligibility and draw up a shortlist of candidates based on the nomination documents provided.
• Shortlisted candidates will be asked to provide a brief supporting statement summarising their key achievements, highlighting the impact of their work and justifying why they deserve the specific lectureship for which they have been entered.
• The recipient of the lectureship will then be selected and endorsed by a selection panel composed of members of the ChemComm Editorial Board. The winner will be announced in the first half of 2018.

NB: Please note that members of the selection panel from the ChemComm Editorial Board are not eligible to nominate, or provide references, for this lectureship.

For any queries, please contact the editorial team at chemcomm-rsc@rsc.org.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Cram Lehn Pedersen Prize 2018 – call for nominations

The International Committee of the International Symposium on Macrocyclic and Supramolecular Chemistry is pleased to invite nominations for the Cram Lehn Pedersen Prize for young supramolecular chemists.

The Cram Lehn Pedersen Prize, named in honour of the winners of the 1987 Nobel Prize in Chemistry, recognises significant original and independent work in supramolecular chemistry.

Previous winners include Tom F. A. de Greef, Ivan Aprahamian, Feihe Huang, Oren Schermann, Tomoki Ogoshi, Jonathan Nitschke, and Amar Flood.

Those who are within 10 years of receiving their PhD on 31st December 2017 are eligible for the 2018 award. The winner will receive a prize of £2000 and free registration for the ISMSC meeting in Québec, Canada. In addition to giving a lecture at ISMSC, a short lecture tour will be organised after the meeting in consultation with the Editor of Chemical Communications, the sponsor of the award.

Nomination Details:

You may nominate yourself or someone else. Please send your CV, list of publications (divided into publications from your PhD and post-doc, and those from your independent work), and if desired, a letter of support, or these materials for someone you wish to nominate, to Prof. Roger Harrison (ISMSC Secretary) at rgharris@chem.byu.edu by 31st December 2017.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Creating Defects to Enhance Oxygen Evolution Activity: A Case Study using CoFe Layered Double Hydroxides

A group of scientists recently made a breakthrough in promoting the oxygen evolution activity of metal hydroxides. They developed a simple yet efficient strategy of immersing the metal hydroxides in diluted acid solutions.

The oxygen evolution reaction (OER) is a critical component for solar-driven water splitting that can sustainably acquire a clean fuel hydrogen gas by solar energy. Certain noble metal oxides, such as iridium dioxide (IrO2) and ruthenium dioxide (RuO2), work extremely well for catalyzing OERs. However, their scarcity restricts their potential for large-scale applications. To address the cost bottleneck, inexpensive alternatives such as metal hydroxides are being investigated worldwide. Unfortunately, their performance cannot compete with IrO2 or RuO2, partly due to their limited active sites for oxygen evolution. As such, there is a current need to develop strategies to promote the oxygen evolution activity of these metal hydroxides.

Figure 1. A schematic illustration showing the structural change of CoFe layered double hydroxide after being immersed in diluted nitric acid. Acid soaking creates Fe, Co and O defects (represented by VFe, VCo, and VO in the illustration, respectively) as well as separating the hydroxide layers.

Recently, Zhou et al. from Hunan University and Shenzhen University in China, demonstrated an easy acid-etching method that is capable of significantly improving the oxygen evolution activity of CoFe layered double hydroxide. When the hydroxide comes into contact with the nitric acid, protons remove some Co, Fe and O atoms and leave behind vacancies. These vacancies are named defects (Figure 2). Oxygen gas prefers to evolve at these defects and thus the defective hydroxide exhibits improved oxygen evolution activity. In addition, the nitrate anions can intercalate in between the metal hydroxide layers and break adjacent layers apart, exposing a large number of defect-containing surfaces and thus further boosting the oxygen evolution activity (Figure 1).

Figure 2. Transmission electron microscopy images of untreated CoFe layered double hydroxide (a, b) and acid-etched CoFe layered double hydroxide (c, d). After etching, the hydroxide nanoplates crack (due to layer separation) and surfaces become rough (due to creation of defects).

This method is expected to be applicable for a wide range of other metal hydroxides. The simplicity and efficiency of this method could make oxygen evolution catalysts cost-effective for commercialization.

 

To find out more please read:

Acid-etched Layered Double Hydroxides with Rich Defects for Enhancing the Oxygen Evolution Reaction

Peng Zhou, Yanyong Wang, Chao Xie, Chen Chen, Hanwen Liu, Ru Chen, Jia Huo and Shuangyin Wang

Chem. Commun. 2017, 53, 11778-11781

About the blogger:

Tianyu Liu obtained his Ph.D. in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is an online blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Negative press is not always a bad thing: a novel anode material for sodium-ion batteries

At a product launch in California last week Elon Musk introduced Tesla’s new electric semi-trailer truck. Musk sells a tantalising future: one where an electric fleet replaces vehicles which currently rely on fossil fuels. Central to this fleet are powerful rechargeable batteries. Lithium-ion batteries are favoured for many current applications, such as portable electronic devices and the current offerings of full and hybrid vehicles. In coming years they are projected to be the technology of choice for the large-scale applications mentioned above and for storing power generated from intermittent renewable energy sources.

A limiting factor in the widespread roll-out of lithium batteries is that lithium is an expensive resource with low natural abundance. Sodium offers a possible alternative and has the obvious benefits of being both very cheap, and one of the most abundant elements in the earth’s crust. The electrode materials used in lithium batteries cannot be used to make the sodium variant because the sodium ion is larger (1.02 Å compared to 0.76 Å for lithium) and damages the crystalline materials optimised for lithium.

Researchers Gu, Gu and Yang at Beihang University in Beijing have reported the synthesis and performance of a novel anode material optimised for sodium. The material is a graphene-tetrahydroxybenzoquinone (Na4C6O6) hybrid, and is comprised of a porous graphene-oxide scaffold decorated with nanocrystals of Na4C6O6. Furthermore, X-ray photoelectron spectroscopy (XPS) reveals the homogenous distribution of sodium throughout this conducting material.

The electrochemical performance contrasts with previously reported materials of this type by exhibiting high cyclic stability. The reversible capacity of graphene-Na4C6O6 at a current density of 74.4 mA g-1 is 268 mA h g-1, a value which is steady over 60 cycles. This is competitive with the graphite anode materials found in lithium batteries, which have specific capacities between 200 and 400 mA h g-1. Furthermore the material performs well over a range of current densities, with reversible capacities of 95 – 211 mA h g-1 measured over a range of 3720 – 186 mA g-1.

With this work the authors contribute, at most, a viable candidate for the next rechargeable sodium battery and, at the very least, continued research into sustainable technologies. This ensures that in addressing our current energy challenges we are solving the problem, not delaying it.

To find out more please read:

3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life
Jianan Gu, Yue Gua and Shubin Yang
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC08045J, Communication

About the author

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)