Archive for the ‘News’ Category

‘Breathprint’ analysis as a real-time, non-invasive diagnostic tool

Scientists, led by Renato Zenobi of the Swiss Federal Institute of Technology (ETH) in Zurich, have been investigating metabolites in exhaled breath, showing that each person’s breath holds a unique, characteristic molecular ‘breathprint,’ as recently featured on the BBC website.  This means that high-precision chemical analysis of a patient’s breath can potentially provide an instant, pain-free and non-invasive medical diagnosis, and may even provide an early warning for healthy persons at risk for certain diseases.  In the future, it may also be used to calculate safe dosages of anaesthesia tailored to each patient’s metabolism and tolerance, or as a fast and convenient doping check for athletes.

Using mass spectrometry, Zenobi and his team regularly measured and analysed the exhaled breath of eleven volunteers for eleven days, finding that each individual’s metabolic ‘breathprint’ showed a unique core pattern and remained stable enough to be useful for medical purposes.  Their mass spectra of exhaled breath have shown peaks or signals representing around a hundred compounds, most of which they are just beginning to identify and assign.

Their findings represent a significant step towards ‘personalised medicine,’ and show great potential for other applications, such as in forensics or metabolomics.

Zenobi and his co-workers first published their early work in chemical breath analysis in a 2011 ChemComm article, in which they used their novel method to identify valproic acid, a medication for epilepsy, in exhaled breath.

C1CC10343A

Read the ChemComm article where it all began!

Real-time, in vivo monitoring and pharmacokinetics of valproic acid via a novel biomarker in exhaled breath
Gerardo Gamez, Liang Zhu, Andreas Disko, Huanwen Chen, Vladimir Azov, Konstantin Chingin, Günter Krämer and Renato Zenobi
Chem. Commun., 2011, 47, 4884-4886
DOI: 10.1039/C1CC10343A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tomoki Ogoshi wins Cram Lehn Pedersen Prize 2013

Congratulations to Professor Tomoki Ogoshi (Kanazawa University, Japan), the winner of the 2013 Cram Lehn Pedersen Prize.

The annual prize, sponsored by ChemComm and named in honour of the winners of the 1987 Nobel Prize in Chemistry, recognises significant, original and independent work by emerging investigators in supramolecular chemistry.

This year the prize is awarded to Professor Ogoshi for his pioneering work in macrocyclic and supramolecular chemistry and, in particular, for his groundbreaking research on pillar[5]arenes, a new class of macrocyclic compounds.  “I’m really honoured to receive the 2013 Cram Lehn Pedersen Prize,” says Professor Ogoshi.  “Cram, Lehn and Pedersen were great pioneers in the synthesis of macrocyclic hosts, and thus receiving this prize is also a great honour for pillararene chemistry.  I hope this will someday place pillararenes alongside other well-known macrocyclic hosts.”

Professor Ogoshi will receive £2,000 and will present his award lecture at the 8th International Symposium on Macrocyclic and Supramolecular Chemistry (8-ISMSC) in Crystal City, Virginia, USA from 7-11 July 2013.  He will also speak at other events during the year– keep an eye on this blog for more details.

“With the introduction of a new class of macrocycles, the pillararenes, Professor Ogoshi has started another area of host-guest molecules,” says Professor Roger Harrison, Associate Professor at Brigham Young University and Secretary of the ISMSC International Scientific Committee.  He adds, “The over 90 publications on these molecules since they were introduced in 2008, show the fascination and possibilities these molecules afford.  Professor Ogoshi’s introduction of these new molecules, along with his insights, creativity, and persistence make him one of the most exciting and up-and-coming supramolecular chemists to follow.  I congratulate Prof. Ogoshi on receiving this award and look forward to seeing more of his discoveries.”

Pillar[5]arene structure

Pillararene structure

“Ogoshi has created a new class of easy-to-make macrocycles, pillar[5]arenes, with a novel cross section of properties,” says Professor Amar Flood (Indiana University), a member of the ISMSC International Committee and 2011 Cram Lehn Pedersen Prize winner.  “Ogoshi has highlighted the properties and features of pillararenes in a series of papers and we are now seeing many others in the field of supramolecular chemistry moving forwards with these compounds in their own research endeavors.”

Last year’s prize was awarded to Dr Jonathan Nitschke (University of Cambridge).

Early bird registration for 8-ISMSC closes on 15 April 2013, so do hurry and register online.  You can listen to Professor Ogoshi’s lecture, get to meet a mix of established and younger researchers in supramolecular and macrocyclic chemistry, and you may even submit an abstract to present a short talk or a poster to showcase your work.  ChemComm‘s own brilliant and dynamic Deputy Editor Jane Hordern will be at the symposium – let us know if you’ll be there, too.

Find out more about Professor Ogoshi’s innovative research by reading his recent articles in Chemical Science and in ChemComm:

Supramolecular polymers with alternating pillar[5]arene and pillar[6]arene units from a highly selective multiple host–guest complexation system and monofunctionalized pillar[6]arene
Tomoki Ogoshi, Hitoshi Kayama, Daiki Yamafuji, Takamichi Aoki and Tada-aki Yamagishi
Chem. Sci., 2012, 3, 3221-3226

Thermally responsive shuttling behavior of a pillar[6]arene-based [2]rotaxane
Tomoki Ogoshi, Daiki Yamafuji, Takamichi Aoki and Tada-aki Yamagishi
Chem. Commun., 2012, 48, 6842-6844

Ionic liquid pillar[5]arene: its ionic conductivity and solvent-free complexation with a guest
Tomoki Ogoshi, Naosuke Ueshima, Tada-aki Yamagishi, Yoshiyuki Toyota and Noriyoshi Matsumi
Chem. Commun., 2012, 48, 3536-3538

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Making Bispirin: A new drug to fight both indigestion and pain

Until now, drugs which fight gastrointestinal infections and those which treat acute inflammation have been found to interfere with each other.  For instance, people infected with the Helicobacter pylori bacterium have needed to deal with the additional risk of gastrointestinal bleeding associated with the use of aspirin and other inflammatory drugs.

Australian research chemists, led by Philip C. Andrews of Monash University, have designed a new drug which treats gastrointestinal infections and acute inflammation at the same time.  They have successfully synthesized bispirin, a bismuth acetylsalicylate complex which combines the effectiveness of bismuth carboxylate compounds as anti-infection agents with that of acetyl­salicylic acid (aspirin) as an anti-inflammatory drug.  Their initial tests have shown that bispirin’s antibacterial effects are comparable or better than those of current bismuth drugs, and investigations of bispirin’s anti-inflammatory activity are currently in progress.

Making Bispirin_graphical abstract

This journal article has also been recently featured on C&ENread it here.

Read this ‘HOT’ ChemComm article in full:

Philip C. Andrews, Victoria L. Blair, Richard L. Ferrero, Peter C. Junk and Ish Kumar
Chem. Commun., 2013, 49, 2870-2872
DOI: 10.1039/C3CC40645H

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

11th International Conference on Materials Chemistry (MC11)– Registration now open!

We are delighted to announce that registration for the 11th International Conference on Materials Chemistry (MC11) is now open.

Why take part in this conference?

In the 20th year of this international Materials Chemistry conference series, this meeting will bring together researchers from across this exciting field to discuss four key areas of application of materials chemistry:

  • Energy Materials – including all aspects of Materials Chemistry related to energy generation, conversion and storage.
  • Environmental Materials – the design, synthesis and applications of materials that facilitate processes to provide a sustainable environment.
  • Biomaterials – materials for tissue engineering and healthcare, green biomaterials and advanced synthesis methods of biomaterials.
  • Electronic, Magnetic and Optical Materials – encompassing inorganic, organic, hybrid and nano materials, soft matter and interfaces.

Registering early guarantees you an early bird discount of £50 – so register now!  And you can showcase your own work by presenting a poster.

MC11 will appeal to academic and industrial scientists working on the chemistry, physics and materials science of functional materials.  Come and hear the best in the field and take advantage of many opportunities for discussion with other researchers in materials chemistry.

For more information visit: http://rsc.li/mc11

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Removing toxic chemicals with POPs

The filters used in gas masks, which give protection against toxic industrial chemicals, are often large and cumbersome, being made from activated carbon that is impregnated with metal salts. In a search for alternatives, SonBinh Nguyen and colleagues at Northwestern University, Evanston, Illinois, have joined forces with scientists at the Edgewood Chemical Biological Center, Maryland, to investigate a series of porous organic polymers (POPs) bearing metal-catecholate groups. By changing the molecular components used in their synthesis, the materials have been tailored to hydrogen bond to, and consequently eliminate, specific toxic industrial chemicals, like ammonia.

‘Metal-organic frameworks (MOFs) have the same customisable characteristics as POPs, and have been investigated for their ability to remove toxic chemicals,’ says Nguyen. ‘Yet many of the MOFs known today are not very stable, owing to the prevalence of metal-oxygen bonds, and will degrade in the presence of atmospheric moisture. POPs, on the other hand, contain carbon-carbon bonds, which are less susceptible to moisture attack,’ he explains.

Chemical reaction

Read the full article in Chemistry World

Read the original journal article in ChemComm:
Removal of airborne toxic chemicals by porous organic polymers containing metal–catecholate
Mitchell H. Weston, Gregory W. Peterson, Matthew A. Browe, Paulette Jones, Omar K. Farha, Joseph T. Hupp and SonBinh T. Nguyen
Chem. Commun., 2013, Advance Article
DOI: 10.1039/C3CC40475G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

23rd International Symposium: Synthesis in Organic Chemistry

The deadline for submitting poster abstracts for the 23rd International Symposium: Synthesis in Organic Chemistry is fast approaching – 11 March 2013.

The Synthesis in Organic Chemistry conference is the flagship event of the RSC’s Organic Division. This conference will provide an international showcase for the core area of organic chemistry – synthesis – covering all aspects of contemporary organic synthesis and providing a forum for the ever more exciting methodologies and strategies that continue to emerge.

Don’t miss out – reserve your poster presentation space for a chance to showcase your own work, and register early to take advantage of the £50 saving on the standard fee.

Remember too that there are a limited number of bursaries on offer for students and younger members of the RSC in the early stages of their career – worth £150.

Make sure you take the opportunity to join us to hear outstanding speakers across the many themes of the symposium in an extremely stimulating programme of plenary and keynote lectures.

Check out the event website to find out more – http://rsc.li/os23

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A new system for cancer detection

While current cancer-diagnosis methods rely on an invasive biopsy or the detection of cancer-specific biomarkers, South Korean scientists have developed a simple and non-invasive detector for cancer cells that could speed up the early diagnosis of the condition, leading to a greater chance of survival for cancer patients.

Cancer cells fluorescing

Daunomycin interacting cancer cells viewed with fluorescene microscopy

Cancer cells have been found to differ from normal cells in several ways, including the make up of their cell membranes. Cancer-cell membranes have been found to contain more anionic lipids than normal cells, leading to an overall negatively charged cell surface. Yoon-Bo Shim and co-workers from Pusan National University, have exploited this negative surface charge to develop a probe based on daunomycin, an anti-cancer drug that is known to interact strongly with anionic lipids.

Read the full article in Chemistry World.

Read the original journal article:
Cancer cell detection based on the interaction between an anticancer drug and cell membrane components
Chem. Commun., 2013, 49, 1900-1902
DOI: 10.1039/C2CC38235K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Early Alzheimer’s diagnosis compound

Alzheimer’s disease is the most common form of dementia and, as there is no cure, early diagnosis is crucial for treatment to be effective. To this end, UK and US scientists have developed a labelled tracer compound that binds to plaques closely associated with Alzheimer’s disease (AD) so that the plaques can be picked up by a medical imaging technique.

The tracer compound is a [18F]-labelled barbiturate and is used with the imaging technique positron emission tomography (PET). Although other radiolabelled compounds have been used as PET tracers, using [18F]-labelled barbiturates for molecular imaging in AD has distinct advantages, such as good blood-brain barrier crossing ability, metabolic stability and easy accessibility.

Tree that looks like a face with some leaves blowing away to represent memory loss in Alzheimer's diseaseAs Alzheimer’s disease advances, symptoms can include confusion, irritability and aggression, and long-term memory loss © Shutterstock

 Matteo Zanda at the University of Aberdeen and colleagues, in conjunction with Pfizer in the US, developed several fluorinated barbiturate analogues. The key to developing an effective molecular imaging radiotracer is the ability to distinguish between a healthy individual and someone suffering from a neurological disease, such as AD, they say. Barbiturates have a strong capacity for forming structures with biopolymers and are effective metal ion chelators. As such, the team thought that they would bind to AD-related plaques, which consist of the biopolymer β-amyloid and metal cations, such as Zn(II) and Cu(II).

See the Chemistry World story in full or read the Chem Comm article:

18 F-barbiturates are PET tracers with diagnostic potential in Alzheimer’s disease
Elisa Calamai , Sergio Dall’Angelo , David Koss , Juozas Domarkas , Timothy J. McCarthy , Marco Mingarelli , Gernot Riedel , Lutz F. Schweiger , Andy Welch , Bettina Platt and Matteo Zanda
Chem. Commun., 2013,49, 792-794
DOI: 10.1039/C2CC38443D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Emerging Investigator Lectureship: Nomination Deadline Friday 7 December

We are delighted to invite nominations for ChemComm Emerging Investigator Lectureship 2013. The lectureship, which is awarded annually, will recognise an emerging scientist in the early stages of their independent academic career. 

 Deadline for Nominations: 7 December 2012
Nominate now

To qualify
To be eligible for the ChemComm Emerging Investigator Lectureship, the candidate should have completed their PhD on or after 5th September 2004.

The candidate should also have published at least one article in ChemComm during the course of their independent career. 

Award details
The recipient of the award will be invited to present a lecture at three different locations over a 12 month period. It is expected that at least one of the locations will be a conference. The recipient will receive a contribution of £1500 towards travel and accommodation costs. S/he will also be presented with a certificate and be asked to contribute a ChemComm Feature Article.

Nominations
Those wishing to make a nomination should send the following details to the ChemComm Editorial Office by 7th December 2012

  • Recommendation letter, including the name, contact details and website URL of the nominee.  
  • A one page CV for the nominee, including their date of birth, summary of education and career, list of up to five independent publications, total numbers of publications and patents and other indicators of esteem and evidence of independence.
  • A copy of the candidate’s best publication to date (as judged by the nominator).
  • Two supporting letters of recommendation from two independent referees. These should not be someone from the same institution or the candidate’s post doc or PhD supervisor.

The nominator and independent referees are requested to comment on the candidate’s presenting skills. 

Please note that self nomination is not permitted.

Selection procedure
The ChemComm Editorial Board will draw up a short-list of candidates based on the information provided by the referees and nominator. Short-listed candidates will be asked to provide a supporting statement justifying why they deserve the award. The recipient of the award will then be selected and endorsed by the ChemComm Editorial Board. 

Previous winners

Hiromitsu Maeda 

2012 Professor Hiromitsu Maeda (Ritsumeikan University, Japan) – he’ll be presented with his lecture certificate at ICPOC 21.
2011 Dr Scott Dalgarno (Heriot-Watt University, Edinburgh, UK) – Find out about his Emerging Investigator Lecture tour in China.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Spinks Symposium 2013: Regenerative Medicine – registration open

 28 January 2013 

Chemistry Centre, Burlington House, London

The therapeutic promise of regenerative medicine, as a way to restore aging or damaged tissues and organs, is one of the most exciting areas of medicines research. With the proportion of older people increasing, degenerative and chronic diseases are a major challenge. To move forward, the chemical sciences have a vital role to play in understanding

  • disease mechanisms
  • signalling of stem cells
  • cellular differentiation
  • new methodologies for surface modification

The 2013 Spinks Symposium will explore the critical issues that underpin developments in regenerative medicine and provide a clear understanding of the challenges involved in translating research outputs into application. Particular emphasis will be put on how medicinal chemistry/chemical biology research might provide a springboard to therapeutic development. Researchers from industry, academia and the wider health sciences sectors will join together for this stimulating workshop, including oral presentations discussion groups, flash presentations and a comprehensive poster session.

How can I get involved?

  • Abstracts for the poster programme are now invited. Take full advantage of this exceptional opportunity to present your work and submit before Friday 21st December.
  • Registration is also open and if you would like to benefit from the early bird rates be sure to secure your place before Friday 21st December
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)