Archive for the ‘First Independent Author’ Category

ChemComm Milestones – Silvia Marchesan

In 2011, Silvia Marchesan published her first article as a corresponding author in our journal. We wanted to speak to Silvia about why she chose ChemComm as home for Tripeptide self-assembled hydrogels: unexpected twists of chirality.

Read our interview with Silvia here:

What are the main areas of research in your lab and what motivated you to take this direction?
Nature’s choice for homochirality (e.g., L-peptides) has stimulated our research, as we question it with heterochiral molecules. The scientific journey in this direction started from the design of simple and low-cost tripeptides to define self-assembly rules within chemical systems of biological relevance. We typically use 1 or 2 D-amino acids in D,L- tripeptides, and study small libraries with variations in stereochemistry or amino acid sequence. We recently established how chirality affects spatial conformation for assembly from the molecular, through the nano-, micro- and up to the macroscale. In this way, we can link macroscopic properties of the final systems back to the fine structural details of the building blocks. Our systems assemble in benign solvents, such as buffered water or acetonitrile, and design allows the fine-tuning of their lifetime and biodegradation rate. Applications vary, from biomimicry of natural structures to antimicrobial or bioadhesive soft matter (ChemComm 2020), to the bioinspired design of catalysts (ChemComm 2017), whereby function can be switched on/off with assembly/disassembly.

As Alice steps into Wonderland through the mirror, so we like to think that use of the mirror-image of natural L-amino acids enables entry into a supramolecular wonderland, whereby the building blocks are similar overall to their natural counterparts, but with a “magical twist” (indeed, often D-amino acids induce a kink in the backbone). We also like the challenge to combine different systems together at the boundary with nanotechnology: a branch of our research enjoys stimulating collaborations to attain hybrid or composite nanomaterials with carbon nanostructures for new applications in catalysis, biomaterials, biomarker detection, etc.

Can you set this article in a wider context?
The 2012 Communication set the first example whereby a simple substitution of an L-amino acid with its D-enantiomer in an unprotected (linear) peptide sequence dictated a dramatic change in self-assembly behavior, since the tripeptides with D-L-L stereoconfiguration formed nanostructured hydrogels at physiological conditions, while their homochiral analogues simply precipitated. Moreover, a simple change of order in the amino acid sequence allowed to achieve different nanomorphologies (i.e., twisted fibrils or nanotapes), giving scope for further investigations. It took some years to obtain funding for this research and gather the required resources to identify the rationale behind these observations, as well as to convince skeptics that this approach can indeed be extended to other examples, and can add function to the assemblies. Examples include catalysis (ChemComm 2017) or mimicry of biological structures, such as the extracellular matrix (ECM) to sustain cell culture (ChemComm 2016) or even to induce cell adhesion, with bioactive ECM-derived motifs (ChemComm 2020). The possibility to create a desired function with the assemblies is especially attractive to attain spatiotemporal control over reaction cascades, or to design therapeutics that are activated where and when needed.

What do you hope your lab can achieve in the coming year?
Funding! Our funded projects have ended and further resources are required to make the leap towards tailored applications. These systems have a great potential: research has identified thus far sequences with very interesting properties, such as the ability to inhibit pathological amyloid fibrillization, and to exert antimicrobial activity only when assembled. Manuscripts are in preparation, so… stay tuned! Full-atom molecular dynamics simulations have unveiled how the peptides dance as they assemble, and single-crystal XRD has provided mesmerising photographs of water-channels formed by simple sequences, and with varying diameter in the nanometer scale. Given the required resources, I am confident we can produce useful dynamic systems and perhaps even shed a new light on life’s choice for homochirality.

Describe your journey to becoming an independent researcher.
I fell in love with research at first sight, and the fire burns bright despite the rollercoaster of academic life. My journey was non-conventional, as I simply followed the passion for science that led me from Italy (M.Sc. on fullerenes under the supervision of Profs Prato and Da Ros) to the UK (to work with Dr Macmillan who shared my love for (glyco)protein engineering), Finland (where I joined the group of Prof Gahmberg on integrin biochemistry and protein-protein interactions), Australia (joint postdoc between CSIRO and Monash University to work with Prof Forsythe on nanostructured biomaterials) and then back to Italy. When I was at UCL, after work, I loved to stop by the Wellcome Exhibition Centre and the British Library to get inspired. It is there that I discovered the original drawings of Alice in Wonderland, and I am extremely grateful to my supervisors in Australia for allowing me to explore new research avenues in my “spare” time. I wrote many unsuccessful grants, and after submitting what I thought was going to be the last one (thinking of plan B, out of academia), I hit the jackpot with a starting package from the Italian Ministry of Research (MIUR) through the SIR scheme. That was a game-changer that created momentum, and talented postdocs from abroad were attracted to the team, joining forces to explore the exciting area of supramolecular chemistry.

What is the best piece of advice you have ever been given?
To be true to your dream, and commit to it 100%. Enthusiasm is contagious, and creates very positive dynamics in a team. My PhD supervisor offered plenty of quotes from Star Wars, which in turn I offer to my team now! There is also a mask of Darth Vader next to my desktop, to remind me of the urgent need to prompt and implement positive change, to create a better and more inclusive culture in science.

Why did you choose to publish in ChemComm?
During the PhD I had published one article in ChemComm as first author, and I was impressed by the rapid publication times, simple process, and above all, fair and constructive peer-review comments. The whole experience made me feel welcome and part of the scientific community, reflecting other interactions with the RSC and in the UK. ChemComm offered the perfect platform to publish our proof-of-concept and to sail it out into the wider chemistry community. It was an uplifting and totally unexpected surprise to be sitting on my desk Down Under and receive emails from the other side of the world, from colleagues, and from my PhD supervisor, with congratulations for the work. It is important for emerging PIs to receive support from the community– even a short email made a positive and lasting difference.

Marchesan’s Group in 2018, before the COVID-19 pandemic

Silvia moved to UK in 2004 to join Procter & Gamble for an R&D internship, just before taking on a PhD at The University of Edinburgh (UK). She enjoyed also the research environment at UCL (2005-2007), where her PhD supervisor, Dr. Derek Macmillan, had established a new lab. She then moved to the University of Helsinki (2008-2010) as Academy of Finland Fellow, and then to Melbourne as CRSS Fellow (2010-2012) in a joint scheme between Monash University and CSIRO (Australia’s national science agency). In 2015 she set up her independent lab at the University of Trieste (www.marchesanlab.com), and secured a tenure-track position that led her to Associate Professorship (2018) and Habilitation for a Full Professorship (2018). The research potential of heterochiral self-assembling peptides was recognized by Nature Index (2018) and Nature Chemistry (2019). Find the lab on Twitter: @MarchesanLab

Don’t forget to read Silvia’s #ChemComm1st article in our collection ChemComm Milestones – First Independent Articles. Find out more by following the hashtags #ChemComm1st and #ChemCommMilestones on our Twitter.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Sudeshna Roy

Earlier in the year, Sudeshna Roy published her first independent research article in ChemComm. As part of our ongoing #ChemCommMilestones initiative, we wanted to speak to Sudeshna about her experiences becoming an independent researcher. Read Sudeshna’s #ChemComm1st article here: Regioselective synthesis of 4-fluoro-1,5-disubstituted-1,2,3-triazoles from synthetic surrogates of α-fluoroalkynes.

Here’s our interview with Sudeshna.

What are the main areas of research in your lab and how has your research progressed since publishing your first article?
The central theme of our lab revolves around small molecules. We contribute to developing new methods and strategies to access small molecules of biological and medicinal relevance and using them as tools to probe biological questions or in human diseases. Currently, we are pursuing seemingly two disparate programs that I envision merging into a drug-discovery platform. We have always been drawn to fluorination strategies and the impressive surge in fluorinated pharmaceuticals and agrochemicals. We identified that fluoroalkynes, which would be the simplest precursor as a gateway for new fluorinated motifs, are elusive and notorious for undergoing spontaneous cyclotrimerization reactions. A search for synthetic surrogates led us into the domain of fluorinated alkenes and their fascinating chemical reactivity portfolio, primarily due to the polarity inversion feature. On the other hand, we are deeply committed to addressing the ongoing global health crisis of antimicrobial resistance by developing new chemotherapeutic agents against new and existing bacterial targets to expand our armamentarium of antibacterials. We are currently pursuing a multi-disciplinary collaborative project to develop a new class of compounds with narrow-spectrum activity against Mycobacterium tuberculosis (Mtb), the causative agent for tuberculosis. Our ultimate merger will be using the hand-tailored fluorinated compound library, developed in our lab, for ligand-based screening using 19F NMR against antibacterial targets of interest to seek effective and new antibacterials.

Since our first publication in ChemComm, the ongoing efforts have generated an array of diverse heterocyclic compounds using fluorinated alkenes as a synthetic precursor. Concurrently, we have discovered a new class of compounds that we are very excited about. The parent compound of this family shows a narrow-spectrum anti-tuberculosis activity, and other analogues show broad-spectrum activity, including methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococci (VRE).

What do you hope your lab can achieve in the coming year?
Like everywhere else in the world, our research has been severely impacted by COVID-19. All the labs at the University of Mississippi School of Pharmacy were shut down, including ours, for almost two months. We became partially operational starting mid-May at a much-reduced capacity. Accepting the reality that this will remain for a while, in the coming year, we hope to publish more in the area of fluorinated heterocycles, expand our research directions in fragment-based screening to merge our efforts of antibacterial discovery and fluorine chemistry. We also hope to continue our multidisciplinary collaboration on the tuberculosis drug discovery front. We are excited about our recent discovery of a new class of compounds that specifically inhibit Mtb’s growth and survival. We observed broad-spectrum activity through different chemical modifications of the parent compound, including MRSA and VRE. We are investigating the mechanism of action (MoA) and the biomolecular target. The parent compound’s MoA is unknown, whereas interestingly, some analogs target a protein called, MraY, which is involved in bacterial cell wall synthesis. We are definitely looking forward to resuming travel next year and attend conferences.

Describe your journey to becoming an independent researcher.
I have always been interested in chemistry and pursued B.Sc in chemistry from St. Stephen’s College in India and an M.Sc. in organic chemistry from the University of Delhi in India. During my Ph.D., I worked on the total synthesis of tetrahydrofuran-containing natural products with an anti-cancer activity that sparked my interest in small molecules’ biological applications. Hence, I expanded my focus to a more applied field of medicinal chemistry and drug discovery during my postdoctoral tenure. At the University of Kansas, I was part of the NIH-funded Molecular Libraries Probe Production Centers Network (MLPCN) Specialized Chemistry Center, where I participated in several drug-discovery projects in therapeutic areas ranging from mitochondrial permeability transition pore (mtPTP), multiple sclerosis, Alzheimer’s disease, and cardiovascular disease, to name a few. At the UNC Eshelman School of Pharmacy, I gained experience in developing inhibitors of RNA-binding proteins Hu antigen R and Musashi-1 RNA-binding proteins that are overexpressed in breast and pancreatic cancers. Through these experiences, I realized one of my strengths is building a team and leading multidisciplinary collaborative projects. It gives me a tremendous opportunity and pleasure to learn something completely new that I have never done before and integrate those skill sets in drug discovery projects.

I had an interesting journey transitioning to the University of Mississippi as a tenure-track faculty, though. I had no clue I would end up being a PI. As I was nearing the end of my postdoc tenure, I was mainly focusing on applying for industrial jobs. Being an international student, I had limited options with my then visa situation. Even though I was open to different opportunities, I always thought academia was daunting. Constantly thinking about new ideas, securing grant funding, and running a lab leaves you with not much for anything else. Thankfully, I had a couple of great mentors who believed in me and encouraged me to pursue academia. So, I applied and got lucky! Now I know all the scientific pursuits could be rewarding, despite all the challenges. We can be smart and choose how much time to spend to enjoy other aspects of life. It’s a lot of fun working with students that are so driven and passionate. It motivates me to do better to help them in their journey!

What is the best piece of advice you have ever been given?
I have been fortunate to have great mentors in my journey so far and learned a great deal through my advisors, colleagues, and students! However, there are a few that need special recognition. I will attribute my scientific growth to my postdoc advisor Prof. Jeffrey Aubé and being part of the Aubé lab. Jeff has always given me honest opinions and useful advice on setting up a lab and what to expect as a new PI. A close friend of mine, Debajit Saha, who is now an Assistant Professor at Michigan State, always told me to pursue crazy ideas and not be afraid of failure or making mistakes. I have yet to follow my crazy ideas, but I have definitely learned a lot through failures and mistakes. One of the most useful life advice I got was from my therapist. She reminded me to enjoy all aspects of life, think positively no matter what, keep dreaming where and what you want to be in the future; it will get you closer. So, I am always dreaming. Fingers crossed!

Why did you choose to publish your first article in ChemComm?
For our work on the use of fluorinated alkenes as synthetic surrogates for fluoroalkynes to access fluorinated triazoles, we wanted to reach out to a broader audience encompassing all areas of chemistry, materials to chemical biology. We hope our method for preparing fluorinated triazoles will find use in the agrochemical and pharmaceutical industry and materials sciences. We envisioned ChemComm would be a great platform to feature our work!

Bio: Sudeshna obtained her Ph.D. from the University of Missouri-St. Louis. She then joined Professor Jeffrey Aubé’s group for a post-doctoral position first at the University of Kansas and then at the University of North Carolina at Chapel Hill. Sudeshna was appointed as an Assistant Professor of Medicinal Chemistry at the University of Mississippi School of Pharmacy in 2017. Her laboratory develops and applies small molecules for various therapeutic areas, mainly focusing on antibacterial drug discovery. Follow Sudeshna on Twitter: @Roy_Laboratory

 

You can find Sudeshna’s Communication, and other #ChemComm1st articles, in our collection ChemComm Milestones – First Independent Articles.

Or follow the hashtags on our Twitter for more interviews: #ChemCommMilestones #ChemComm1st

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Marta Figueiredo

Marta Figuerido reached her first ChemComm Milestone with this article: Electrocatalytic synthesis of organic carbonates. We spoke to Marta to find out about her experiences as a first-time independent author and why she chose to publish with ChemComm. Read our interview with Marta below.

 

What are the main areas of research in your lab and what motivated you to take this direction?
My main areas of research are electrochemistry and electrocatalysis for energy storage and conversion and synthesis of high-value chemicals. This research is highly motivated by the urgent need for new energetical solutions, either new energy systems or systems based on renewable energy sources. Electrochemistry has the unique possibility of making and breaking bonds by using renewable electrons. This offers the possibility to store energy in chemical bonds, such as in hydrogen and formic acid, to make renewable fuels (such as ethylene and ethanol) or even produce bulk chemicals (such as organic carbonates).

Can you set this article in a wider context?
With this article, we aim to reinforce, within the scientific community and/or chemistry enthusiasts, the idea that fundamental studies are of paramount importance towards the development of new technologies and solutions. It is required to understand the systems at the molecular and nanoscale level in order to optimize it. The investigations reported in this article, do not provide a solution for the synthesis of organic carbonates yet, however, they are a stepping stone for the development of this alternative process.

What do you hope your lab can achieve in the coming year?
Scientifically, I hope that our lab achieves recognition in the field of electrocatalysis for the synthesis of chemicals and gives significant contributions to the scientific community. We are still a young lab, but luckily, we are within the Inorganic Materials and Catalysis group. This group provides not only all the necessary experimental tools but also a broad range of expertise in heterogeneous catalysis, design of catalytic materials and computational modelling that will make our tasks much more comfortable. Moreover, I am surrounded by incredibly motivated researchers (PhD’s and postdocs, technicians and colleague staff members) that I am sure will help with this new goal. I sincerely hope that the world wins the fight with COVID and we can go back to our lab and enjoy science together.

Describe your journey to becoming independent researcher.
My journey to becoming an independent researcher was longer than what is assumed to be the norm. After my PhD, I was a postdoc in 3 different Universities in Europe (Finland, Netherlands, and Denmark). My postdocs were all in the field of electrochemistry, but only the last two were focused on electrosynthesis. Before my current position, as an Assistant Professor at TU/e, I worked as a researcher in industry. I consider that period as one of the most important of my scientific career. In addition to all the learning, it also contributed to develop and define my research aims and interests.

What is the best piece of advice you have ever been given?
Do what you feel its right, and everything else will be fine.

Why did you choose to publish in ChemComm?
There are two main reasons that made me choose to publish in ChemComm. Firstly, it was a personal milestone to publish at ChemComm. Secondly, I was aiming to publish this article in a journal of a broad audience and of general chemistry, and ChemComm is one of the most renowned journals with these characteristics.

Short bio: Marta Costa Figueiredo is Assistant Professor of Electrocatalysis at Eindhoven University of Technology since April 2019. She obtained her PhD in electrocatalysis, science and technology in 2012 at the University of Alicante, Spain under the supervision of Prof. Juan Feliu. After that, she was a postdoctoral researcher at different Universities in Europe such as Aalto University (Finland), Leiden University and University of Copenhagen. Before joining TU/e, Marta worked in the industry as Jr Scientist at Avantium (Amsterdam). In Eindhoven, her research is devoted to electrocatalysis and electro(catalytic)synthesis for sustainable processes and production of high value chemicals.

Find Marta on Twitter: @MartaCFigueired

 

All of our authors’ #ChemComm1st articles are now available in ChemComm Milestones – First Independent Articles.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Alex Murray

This week, we are bringing you more from #ChemCommMilestones – we spoke to Alex Murray about becoming a first-time indepedent author and publishing with our journal.  Read Alex’s #ChemComm1st article: Ionicity-dependent proton-coupled electron transfer of supramolecular self-assembled electroactive heterocycles.

Find out more about Alex in our interview with him below.

What are the main areas of research in your lab and what motivated you to take this direction?
It’s probably easier to start with the second part: I trained as very much an organic chemist, but then moved to the US and learned electrochemistry as a postdoc, but I really am interested in redox-active small molecules more than anything else. The main applications that spring from this that we are researching are firstly new organic redox-flow batteries, and secondly the use of these small organic molecules as homogeneous electrocatalysts, especially with interesting interfacial behaviour.

Can you set this article in a wider context?
Well, this started as a side project really. I was watching a talk by a student from the Hiscock group in my first few weeks as a PI, and I was quite fascinated by their self-associating quinones. There has been so much fantastic and complex work done on the nuances of the electrochemistry of even quite simple quinones so I was really intrigued how these ‘quinone-SSAs’ would behave. What we found, broadly, is that the larger the size of the self-associated species, the more it behaved like a quinone in unbuffered or organic solution, so there appears to be some sort of barrier to proton transfer. But this is interesting, because for this system self-association makes the electron transfer faster, whereas often people have observed the opposite effect. I think with all the excitement about anthraquinones in organic redox flow batteries, the more unusual behaviours we know to look out for the better… and we are working on making other self-associated redox active heterocycles of course.

What do you hope your lab can achieve in the coming year?
Firstly we are following up on this collaboration, where we are interested in more complex supramolecular systems where we can control the self-association more readily. Secondly, we are hoping to make progress on both a new organic redox flow battery, and a new catalytic system we have in the works. It’s been a really tough few months, especially for my international PhD student who struggled to leave and return to her family, then struggled even harder to return to the UK. But things are looking up, and we are hoping to have more really exciting science to show within the next year.

Describe your journey to becoming independent researcher.
Since about a year into my PhD I think this is always something I’d wanted to do, though I was aware it’s not an easy road to say the least! I think the turning point for me was learning about electrochemistry – I really felt the confidence of having a more unique skill set than when I’d been trying to write ‘pure organic’ chemistry proposals, so my personal advice to PhD students and postdocs who want to be independent researchers is definitely to try and learn something very different – find a new field and learn to talk to them, but in a different way than how they talk to one other.

What is the best piece of advice you have ever been given?
“Why not, and what’s the worst that could happen”… this is good advice for crazy scientific ideas (the famous ‘Friday afternoon reaction’), but not in all aspects of life…

Why did you choose to publish in ChemComm?
We chose ChemComm because of the fast publication time, good support for early career researchers and positive previous experiences with the publication process at ChemComm and the RSC in general. Also this paper really sits at the interface of (organic) electrochemistry and supramolecular chemistry so it definitely made sense to go for a journal with a pretty general readership.


Alex was born in Hull, UK in 1989, and obtained an MChem in Chemistry from the University of Sheffield in 2011, with a year of this degree undertaken at Monash University (Australia). He then carried out research in redox organocatalysis at the University of Bath, working in the group of Dr. Dave Carbery, receiving a PhD in 2015. This also included a CASE placement at GlaxoSmithKline. Alex then moved to the University of Nottingham, working for one year in the group of Professor Chris Moody on generating sp3-rich scaffolds for medicinal chemistry. Alex then moved to the US, receiving a Dreyfus Postdoctoral Fellowship to work on electrochemical catalysis in the group of Prof. Yogesh Surendranath at MIT. In May 2018 Alex returned to the UK and was appointed as a Lecturer at the University of Kent.

Don’t miss more #ChemComm1st articles in our collection ChemComm Milestones – First Independent Articles.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Jian-Ji Zhong

ChemComm Milestones continues. This week, read the #ChemComm1st article from Jian-Ji Zhong: Photoinduced synthesis of fluorinated dibenz[b,e]azepines via radical triggered cyclization. As part of this feature, we spoke to Jian-Ji about his experience to becoming an independent researcher and why he chose to publish with ChemComm. More below.

 

 

What are the main areas of research in your lab and what motivated you to take this direction?
My group was established in Shantou University in 2018 and we have great passion. Our research interest mainly focuses on organic photosynthesis, including 1) visible-light photocatalysis for the functionalization of carbon-carbon double bonds and carbon-carbon triple bonds, and 2) photocatalyst design. My early career training in photochemistry and nowadays the call for greener, more environmentally benign and sustainable development in chemical society are the main motivation for me to take this direction.

Can you set this article in a wider context?
Functionalization of carbon-carbon double bonds or carbon-carbon triple bonds is a powerful strategy to access important and valuable structure motifs existing in natural product, pharmaceuticals and biological active molecules. The target goal in our group is to synthesize the valuable molecules using green methodology. In this manuscript, we described a simple, efficient and green photochemical protocol for the functionalization of terminal alkynes to construct the valuable dibenz[b,e]azepine skeleton which is the core structure in antidepressants. Various fluorinated groups, which can impact the bioactive properties of these molecules, were successfully incorporated into the skeleton via radical triggered cyclization under simple and mild conditions (room temperature, visible-light irradiation). This protocol does not require harsh conditions such as stoichiometric oxidants or high temperature. Use of inexpensive and commercially available fluorinated reagents highlights the advantages of photocatalysis and the practicability of this protocol. This article greatly inspires us to continue in this research direction.

What do you hope your lab can achieve in the coming year?
It is a cool experience to publish my first independent research in ChemComm, which greatly strengthens our confidence to conquer more challenging tasks in the future. In the coming year, two goals I hope can be achieved are 1) more excellent students to join our passionate group; 2) more exciting research works to be accomplished.

Describe your journey to becoming an independent researcher.
It has not been an easy journey. I finished my undergraduate course in Lanzhou University in June 2010. Organic chemistry is the preponderant discipline in Lanzhou University, therein I acquired a solid foundation of knowledge about chemistry and got excellent experimental skills training. Then I was recommended to Prof. Li-Zhu Wu and Prof. Chen-Ho Tung’s group in Technical Institute of Physics and Chemistry, CAS for my PhD studies. During my PhD, my research work mainly focused on the development of Cross-Coupling Hydrogen Evolution Reactions. To further improve myself, I joined Prof. Chi-Ming Che’s group in Southern University of Science and Technology to start my postdoc research career in Oct. 2015. At that time, I was interested in designing new platinum(II) metal complexes as photocatalyst for organic transformations. After 12 year’s expertise training and many people’s support, especially my PhD and postdoc advisors, I started my independent research career in Shantou University in Jan 2018. Yet it is just the beginning: I will stay focused and keep learning on the road of scientific exploration.

What is the best piece of advice you have ever been given?
In my student career, my advisors always told me “simple is the best”. It always reminds me to do subtraction other than doing addition for scientific research. It is the best piece of advice I have been given.

Why did you choose to publish in ChemComm?
ChemComm is a renowned journal with a broad readership in chemistry. And I like the quick turnaround time for submission of urgent work. That is why I chose ChemComm.

 


Dr. Jian-Ji Zhong’s biography:
January 2018 – present: Associate Professor, Department of Chemistry, Shantou UniversityOct. 2015-Oct. 2018: Postdoc, Southern University of Science and Technology (Advisor: Prof. Chi-Ming Che)Sept. 2010-June 2015: PhD in Organic Chemistry, Technical Institute of Physics and Chemistry, CAS (Advisors: Prof. Li-Zhu Wu and Prof. Chen-Ho Tung)

Sept. 2006-June 2010: Bachelor of Science in Chemistry, Lanzhou University

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Zewei Quan

In 2017, Zewei Quan published his first independent research article ‘Mild synthesis of monodisperse tin nanocrystals and tin chalcogenide hollow nanostructures‘. We wanted to find out why Zewei chose to publish this work with ChemComm and how his research has progressed in 2020. Read more in the interview below.

What are the main areas of research in your lab and how has your research progressed since publishing your first article?
My research is mainly based on the design and synthesis of novel inorganic materials to understand their structures and promote their applications. Two classes of inorganic compounds, i.e., metal and metal halide in the form of nanocrystal or single crystal, are being actively explored in my group. We are keen to understand the underlying structure-property relationship of these intriguing materials at both atomic and mesoscale levels.

Since my first article in ChemComm, after I became a faculty, we have made a series of progresses in two main aspects. First, high pressure is adopted to investigate the structural responses at atomic level and the corresponding property variations under compression. As for metal halides with soft lattices, intriguing pressure-induced optical behaviors have been demonstrated, including band-gap narrowing in three-dimensional (3D) double perovskite of Cs2AgBiBr6, remarkable emission enhancement in one-dimensional (1D) cuprous halide complex of CsCu2I3, and emission color modulations in zero-dimensional (0D) hybrid metal halide, (bmpy)9[ZnBr4]2[Pb3Br11]. As for noble metal nanomaterials (Au and Pd), a series of pressure-induced phase transformations have been observed, to uncover their intrinsic phase stability and atomic movement path between different phases. Second, in addition to atomic structure, we are also interested in producing novel meosclae superstructures based on anisotropic nanoparticles and exploring their collective optical properties. Notably, well-defined nanodumbbells have been self-assembled into an orientationally ordered 2D degenerate crystal with a 6-fold symmetry, in which these NDs possess no translational order but three allowed orientations with a rotational symmetry of 120 degrees.

What do you hope your lab can achieve in the coming year?
In the coming year, we look forward to exploring the structure-dependent optical properties of 0D metal halides. The self-trapped exciton (STE) emission of these hybrid metal halides has several intriguing features, however, is still rarely investigated in past decades. We plan to utilize the high pressure method to understand the key factors in determining their STE emission characteristics including energy, intensity and quantum yield, and then design and prepare the target systems with appropriate structural parameters and desired optical properties.

Describe your journey to becoming an independent researcher.
After I received my B.Sc. degree from Wuhan University in 2004, I went to Changchun Institute of Applied Chemistry, Chinese Academy of Science to start my graduate study under the supervision of Prof. Jun Lin, and obtained my Ph.D. degree in 2009. My interest was mainly focused on the synthesis and characterization of high-quality luminescent nanocrystals. After that, I begun to work at SUNY Binghamton with Prof. Jiye (James) Fang, and then worked at Los Alamos National Laboratory with Dr. Hongwu Xu and Dr. James Boncella as an Oppenheimer Fellow. During this postdoctoral period, I enjoyed investigating the self-assembly behaviors of colloidal nanoparticles and the high-pressure structural variations of several typical nanocrystals. I have been a Professor of Chemistry at Southern University of Science and Technology (SUSTech) in Shenzhen, China since 2015.

What is the best piece of advice you have ever been given?
The best piece of advice for my career is “Be a super-postdoc to start your independent research”. When I had my own research group, in addition to teaching courses and writing proposals, I devoted most of my effort to constructing the lab, designing and performing the experiments, analyzing the data and writing the papers, like a super postdoc. This advice is very helpful to train the junior members with capabilities to perform their own research projects.

Why did you choose to publish your first article in ChemComm?
I chose to publish my first independent work in ChemComm, to present a mild synthesis method of monodisperse nanocrystals. ChemComm is a classical journal with a decent reputation, and the scope covers most fields in chemistry. I believe my work published in ChemComm would have a broad readership. Right now, I have two other papers published in ChemComm, and hopefully will have more soon.

Biography: Zewei Quan is currently a Professor in the Department of Chemistry at Southern University of Science and Technology (SUSTech). He obtained his Ph.D. in inorganic chemistry from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (with Prof. Jun Lin) in 2009. After that, he worked as a postdoctoral fellow and later a research scientist at the State University of New York at Binghamton with Prof. Jiye Fang (2009-2012). He then joined Los Alamos National Laboratory as an Oppenheimer Fellow (2012-2015). His current research interests include solution-phase synthesis, self-assembly, and high-pressure study of inorganic functional materials.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Soumyajit Das

We’ve been enjoying getting to know the first-time authors who have decided to publish in ChemComm and we hope that you have too. This week, we spoke to Soumyajit Das who recently published his #ChemComm1st article: Revisiting indeno[2,1-c]fluorene synthesis while exploring the fully conjugated s-indaceno[2,1-c:6,5-c′]difluorene

Read about Soumyajit below

What are the main areas of research in your lab and what motivated you to take this direction?
We are working on π-conjugated molecules and materials, and wish to contribute to the field of polycyclic aromatic, antiaromatic and proaromatic hydrocarbons. We are currently engaged in extending the scope of fully conjugated indenofluorene (IF) isomers into the higher-order indacenodifluorene (IDF) isomers which are rare in literature. The motivation came from my earlier training in the field of conducting polymers and polyradicaloid hydrocarbons, in addition to the recent developments in the field of physical and synthetic organic chemistry associated with the organic semiconductors

Can you set this article in a wider context?
Our article is about a mild synthetic approach to synthesize the formally antiaromatic indeno[2,1-c]fluorene, an electron-accepting fragment of fullerene-C60 that showed promise in bulk-heterojunction devices, and extension of the same synthetic approach to construct the s-indaceno[2,1-c:6,5-c’]difluorene as the second constitutional isomer of the potentially tetraradicaloid s-indacenodifluorene (s-IDF) family. The IDF isomers may be viewed as two indenofluorene units conjoined through one shared benzene (outer) ring, and they represent the non-alternant isoelectronic motifs for synthetically challenging octacene considering the bonding picture of the outer conjugated circuit as [34]annulene. [2,1-c:6,5-c’]s-IDF showed smaller HOMO-LUMO and singlet-triplet (theoretical) energy gap compared to its first structural isomer s-indaceno[1,2-b:5,6-b’]difluorene. Consequently, a broad electronic absorption spectrum reaching the NIR region and NMR line broadening at elevated temperatures were also observed. Notably, only two IDF isomers (including ours) were now reported in the literature. Given the efficiency of our synthetic route and the interesting chemistry associated with the existing isomers, we are excited to develop the related unexplored non-benzenoid π-conjugated systems.

What do you hope your lab can achieve in the coming year?
I am still at an early stage of building my independent research career, and the current pandemic has already affected the research activity in the group. Publishing our first paper has already been a good achievement for us since we are just one-year-old group at IIT Ropar. I am hoping that the normal research activity in the laboratory resumes soon so we can explore many possibilities in the coming year including the extension of our present research findings. Since our research has the potential to be multidisciplinary, I am also exploring new research directions by finding collaborations with applied physicists and device engineers.

Describe your journey to becoming independent researcher.
After finishing my M.Sc. in chemistry in 2007 from IIT Guwahati (India), I joined Dr. Sanjio S Zade’s group at IISER Kolkata (India) to work on the zirconocene-mediated synthesis of novel heterocycles including their polymerizations. There I was attracted to the fascinating field of π-conjugated materials, and to further explore the field, I joined Prof. Jishan Wu’s group in the NUS Singapore in 2012 to work on the open-shell polycyclic hydrocarbons. To my delight, the findings of my postdoctoral research were published in some of the renowned high-impact journals, and naturally, I started applying for the academic positions in India from 2016 onward with a very optimistic mindset. I realized then how competitive it was to get an academic position. It took me almost 2.5 years to get the assistant professor position in IIT Ropar after finishing my postdoc, after a couple of rejections and failures. Meanwhile, I gained the industrial experience by working as a scientist in the medicinal chemistry units of Sai Life Sciences (2016-2018) and Aurigene (2018-2019). Perhaps the lack of job satisfaction in the industries and the keen desire to become an independent researcher kept me motivated to search for assistant professorship positions in Indian institutes/universities till my age eligibility was allowed, and I kept on applying for that. After joining IIT Ropar on March 2019, I quickly applied for the available funding opportunities and I am pleased to say that currently my research is funded by the Science and Engineering Research Board of India (SRG, 2019-2021) and the institute seed grant (ISIRD, 2019-2022). I look forward to building a vibrant and successful research group while continuing my journey.

What is the best piece of advice you have ever been given?
It’s tough to answer. Professionally, the good one was ‘work hard, but stay alert to unexpected things’, which I pass to my students too. Personally, when the failures hurt, my wife used to say ‘you failed because you have a better opportunity waiting, so don’t quit’.

Why did you choose to publish in ChemComm?
I chose ChemComm because it is renowned, having a high impact, and broad readership across all the chemical science subdisciplines. My first publication was ChemComm in 2010, and I am very glad to be a part of this journal again by contributing my research group’s first publication as the corresponding author.

Soumyajit’s Biography:

  • Assistant Professor: 03/2019 – Present, Indian Institute of Technology Ropar, India.
  • Senior Scientist: 03/2018 – 02/2019, Aurigene Discovery Technologies, Bangalore, India.
  • Research Scientist: 09/2016 – 02/2018, Sai Life Sciences, Pune, India.
  • Research Fellow: 03/2012 – 08/2016, National University of Singapore. Supervisor: Prof. Jishan Wu
  • Ph.D. in Chemistry: 11/2007 – 02/2012, Indian Institute of Science Education & Research Kolkata. Supervisor: Prof. Sanjio S. Zade

Follow Soumyajit on Twitter: @chmsdas

#ChemCommMilestones

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Yizhen Liu

Yizhen Liu published his first independent article with ChemComm in 2016. We wanted to find out more about Yizhen’s experience as a first-time author and what it was like to publish with our journal. Check out his #ChemComm1st article here: A DNA kinetics competition strategy of hybridization chain reaction for molecular information processing circuit construction.

Read more from Yizhen below:

What are the main areas of research in your lab and how has your research progressed since publishing your first article?
My laboratory mainly focus on DNA molecular circuits and biosensors related to DNA single base mutation detection. Based on DNA chain replacement and toehold exchange reaction, we constructed a series of DNA molecular logic devices (4 ChemComm in total). The first work reported DNA three-digit keypad lock, and then we successively constructed 4 to 2 encoders, computational redundant modules and three-bit molecular registers. In the work of the 4 to 2 encoder, for the first time we combined the logic judgment function of DNA circuit with the detection of single base mutation, so that the sensor based on hybridization analysis can not only recognize the presence of single base mutation, but also realize the information feedback of the mutation site region.

What do you hope your lab can achieve in the coming year?
In the coming year, we hope to make breakthroughs in specific enrichment and intelligent sensing of low abundance SINGLE base mutations in DNA.

Describe your journey to becoming independent researcher.
I obtained my Bachelor’s degree in Chemistry (2008) and Doctoral degree in Analytical Chemistry (2014) from Wuhan University. My doctoral thesis was on nucleic acid colorimetric sensing based on DNA gold nanoparticles and surface-enhanced Raman analysis method. During this process, I developed a strong interest in DNA circuits. Using molecules to build computing hardware can well combine my major with my hobby in computer science. Therefore, after I got recruited by Shenzhen University as an independent researcher, I focused more on the fields related to DNA nanotechnology, and by attending professional academic conferences and learning from excellent reports of domestic and foreign researchers, my understanding of this frontier field has sufficiently deepened. My first review invitation as an independent researcher also came from ChemComm. Being a reviewer has greatly helped me to stick to the current academic frontier and offered me inspiration in my research.

What is the best piece of advice you have ever been given?
As my father always teaches me that “details determine success or failure”, I am strict with myself in every thing I do in my work and life, paying attention to every detail and always thinking twice, which has indeed brought me many successes, big and small.

Why did you choose to publish your first article in ChemComm?
In fact, my first academic paper was published in ChemComm. ChemComm is very friendly to young researchers and encourages all kinds of novel ideas to be published, which impressed me a lot. In 2016, together with my sophomore students, I was very glad to publish my first paper (and the third one in my academic career) in ChemComm as an independent researcher. We modified the hybridization chain reaction to construct a molecule-level DNA three-digit keypad lock, and were honored to be selected as the outside front cover paper. This bond between ChemComm and my academic career has been continuously strengthened and I sincerely wish ChemComm a prosperous future!

Biography: Yizhen Liu is an Associate Professor of College of Chemistry and Enviromental Engineering at Shenzhen University. Liu obtained his BAchelor’s degree in Chemistry (2008) and Doctoral degree in Analytical Chemistry (2014) from Wuhan University. His thesis work with Prof. Jiming Hu focused on colorimetric and surface-enhanced Raman biosensors based on DNA gold nanoparticles. After receiving his PhD in 2014, he joined the College of Chemistry and Environmental Engineering at Shenzhen University to start his independent research. His current research interests include DNA logic circuits, DNA sensing methods and efficient solar seawater desalination technologies. Outside the lab, you might find him occasionally wandering the PUBG world, training in team leadership. Find him: yzliu@szu.edu.cn

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Amie Norton

If you haven’t heard already, we are speaking to first-time independent researchers who have chosen to publish their first article with ChemComm. This week, we spoke to Amie E. Norton who recently published her #ChemComm1st article: Phase transformation induced mechanochromism in a platinum salt: a tale of two polymorphs

Find out more from Amie below:

What are the main areas of research in your lab and what motivated you to take this direction?
I work as a Research Chemist at the USDA-ARS. As a Research Chemist at the USDA, I work in the grain quality laboratory. One focus of my research is to synthesize new materials (such as nanomaterials) out of the grain. The motivation to take the research in this direction was that I realized I could use my expertise in a new field, thus merging my Ph.D and the new job I was hired to do. The other focus of my research is to design rapid testing of grain products to measure biochemical components to ensure grain quality. I work under Dr. Michael Tilley to accomplish our research program goals under National Plan 306. Rapid testing of materials to measure biochemical components to ensure grain quality falls under this plan.

Can you set this article in a wider context?
I worked in vapochromic sensors, anion sensors and mechanochromic materials. Our end goal was to design rapid testing methods for anions in drinking water and to have a fundamental understanding on these vapochromic materials. These materials were Pt(II) square planar materials that would change colours when the environment around them changed. They would change colours when introduced to a certain anion or vapor. The complexes were stacking Pt(II) complexes, when the complexes were yellow, they would stack in a dimer or monomer orientation, such as a Pt…Pt…Pt orientation of short…long distances. When the Pt complexes were red, they stacked in a linear chain the Pt…Pt…Pt orientation was short…short distances. The surprising thing is that the Pt(II) complex was often selective in anion sensing to just one anion. The selectivity was built into the complex. I was interested in nitrate as a sensing anion so I decided to play around with adding nitric acid to see if adding a proton helps with the anion exchange with the complex going from yellow to red (understanding the role of pH in the anion exchange). I stumbled on this mechanochromic behaviour and then I grew crystals out of nitric acid (pH 1) and acetone. We went to mount the crystals and they started to change when we touched them with a mounting loop. I knew that structural determination of both of the crystalline forms of mechanochromic material were rare as long range order is often lost in the material after the mechanochromic event. I decided to study this behaviour. It turned out to be one of the most interesting projects, but the discovery of the material was serendipitous.

Describe your journey to becoming independent researcher.
I received a Bachelor’s of Science degree in Chemistry from the University of Missouri (Mizzou). During my time at Mizzou, I studied abroad twice, once in London and once in a two week business class in Prague and Vienna. I also minored in Religious Studies and Sociology; I find that we need to be well-rounded in science. I completed a Ph.D at the University of Cincinnati in 2017 where I worked on vapochromic and anion sensors. My Ph.D taught me how to conduct research, and I mentored 30 undergraduates in the lab setting during this time. I feel it’s important to share knowledge and mentor the next group of future scientists.

Afterwards, I worked at NIOSH (National Institute of Occupational Safety and Health) and learned Real-time Sensing Methods. I helped build a robot out of a Roomba vacuum to survey a room for chemical hazards. Next, I worked as a post-doctoral researcher at Bowling Green State University from 2018-2019 working on photo-active materials. I now work for the USDA-ARS as a Research Chemist (2019-present). Currently, I am working on developing new materials out of grain. My current position has allowed me to learn many aspects of grain research. While I came in with little knowledge of the entire process, I am now able to contribute knowledge from my other areas of study and apply them to my current job. The process of getting grain from the field to our tables is actually a very involved process which I’m proud to be a part of. One thing in my career I have always done is welcome a challenge and take the opportunity to learn new skills as they might be needed in my future work.

What is the best piece of advice you have been given?
There are two pieces of advice that I’ve been given that I always try to follow. My parent’s advice growing up was to have “humble confidence”. The definition of “humble confidence” is to be confident without being arrogant, and to be modest while still projecting competence. The other piece of advice I received was from my Ph.D advisor. He taught me that in research when you see something unusual, most people want to run away from it. Make that unusual more dramatic by designing an experiment to figure out what caused it. Some of the most interesting discoveries are found by the unusual. Do not run away from it, instead become more inquisitive about it.

Why did you choose to publish in ChemComm?
ChemComm has a good reputation. The communication fit well with ChemComm. I felt like the information should be a rapid communication.

#ChemCommMilestones


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Hemant Joshi

Hemant Joshi recently published his first independent research article with ChemComm. We wanted to celebrate this exciting milestone by finding out more about Hemant and his research. Check out his #ChemComm1st article: Selenium coordinated palladium(II) trans-dichloride molecular rotor as catalyst for site selective annulation of 2‐arylimidazo[1,2‐a]pyridines

What are the main areas of research in your lab and what motivated you to take this direction?
We are a young research group who started in July 2019. Our research group mainly works on two different research areas: molecular rotors chemistry and homogenous catalysis by pincer complexes. We are trying to develop new and better catalysts for site-selective catalysis. The main motivation behind choosing these fields is my early training as a chemist in homogeneous catalysis and the interesting yet challenging chemistry associated with these fields.

Can you set this article in a wider context?
Our article describes first synthesis of a new class of intramolecular secondary interactions (SeCH…Cl) controlled molecular rotors having Cl−Pd−Cl rotor attached to Se−Pd−Se axle. These molecular rotors showed low rotational barriers which is essential for these molecular machines. The rotor was used as a catalyst for annulation of 2‐arylimidazo[1,2‐a]pyridines. The molecular rotor catalyst was designed in such a way that phenyl ring of ligand is involved in CH−π interactions with 2‐arylimidazo[1,2‐a]pyridines, which interestingly leads to revers regioselective annulated product which is otherwise challenging to obtain.

What do you hope your lab can achieve in the coming year?
Currently, the main focus is to build my independent research profile at CuRaj and to extend the possible network of collaborations to explore more challenging problems in the future. Our group’s main focus is to develop unidirectional molecular rotors with low rotational barriers.

Describe your journey to becoming independent researcher.
Since my early academic days, I was more inclined towards experimental chemistry which was the main driving force for me to choose a chemistry major during my masters. As a PhD research scholar, I joined Dr. Ajai K. Singh’s lab at the Indian Institute of Technology Delhi, India. My doctoral work was mainly focused on synthesis of new air stable metal complexes and metal chalcogenide nanoparticles for catalytic organic synthesis. To further strengthen my training as a chemist and to gain interdisciplinary research experiences, I started my post-doctoral research in Prof. John A. Gladysz’s laboratory at the Texas A&M University, College Station, USA. In Dr. Gladysz’s lab I was introduced to the beautiful word of molecular gyroscopes. Training with both of my previous advisors helped me to learn about how research labs function, and how to carry out projects and run the lab. The training from these labs built the foundation of my independent research which I would like to take up at CuRaj.

What is the best piece of advice you have ever been given?
The two best pieces of advice which helped me are from my parents and my research advisor. The first: to be a better human being and help others which helped in my personal life. The second which was useful in my professional career: run behind solving problems and not high impact factors.

Why did you choose to publish in ChemComm?
ChemComm is renowned journal known to publish interdisciplinary research with urgency. Our research group is glad to start with ChemComm.

Dr. Hemant Joshi is an Assistant Professor of Chemistry at Central University of Rajasthan (CuRaj), India. Hemant obtained his undergraduate (BSc) degree in chemistry from University of Rajasthan, India (2008) and master’s degree from Malaviya National Institute of Technology Jaipur, India (2010). After completing his master’s degree, Hemant joined the PhD program at the Indian Institute of Technology Delhi, India in 2010. His thesis work with Prof. Ajai K. Singh was focused on synthesis of new air stable metal complexes and metal chalcogenide nanoparticles for catalytic organic synthesis. In early 2016, Hemant joined the laboratory of Prof. John A. Gladysz at the Texas A&M University, College Station, USA. In his post-doctoral research work, he was engaged in building new molecular gyroscopes with large cage sizes and understanding their rotational behaviors. Hemant moved back to India in August 2018, and joined BITS Pilani, Pilani Campus, as DST Inspire faculty. In July 2019, Hemant started his independent research career at Central University of Rajasthan. Find him on Twitter: @hkjiitd

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)