Author Archive

Better Make It A Double

Synthesizing nanomaterials consisting of two-particle pairs, or dimers, is no longer a headache. Hongyu Chen and coworkers from Nanjing Tech University, China recently developed a protocol that can produce gold dimers with a record high yield. This breakthrough is published in Chem. Commun.

Dimers are suitable platforms to study the effects of particle-particle interactions on the electrical and optical properties of the constituent materials. Unfortunately, no conventional synthesis methods to exclusively produce dimers from single particles have been successful. This is because of the uncontrollable particle-aggregation rate that leads to the formation of multi-particle clusters. Therefore, how to couple single particles into dimers without triggering their further aggregation has become a tough nut to crack.

Chen and coworkers found a solution by developing a polymer-assisted method that generates gold dimers with high yield. Firstly, they encapsulated individual gold nanoparticles with polymer shells made of polystyrene-b-poly(acrylic acid). Under optimized conditions, the gold nanoparticles were mostly coupled into dimers (Figure 1), achieving a dimer yield of 65%. This is the highest dimer yield achieved for one-step synthesis methods.

Figure 1. (a) A transmission electron microscopy (TEM) image of the polymer-encapsulated gold single particles. (b) A TEM image and (c) a scanning electron microscopy image of the synthesized gold dimers. All scale bars are 200 nm.

The key to this success is due to three factors: temperature, solvent composition and acid concentration. All these factors can change the strength of the repulsion force among the polymer shells. The force must be meticulously tuned to a level that is weak enough to induce 1-to-1 coupling, but strong enough to prevent 1-to-multiple or multiple-to-multiple aggregation. Through a set of control experiments, the authors identified the optimal conditions to be 60 oC, dimethylformamide/water (v/v)=6:1 and 5 mM of hydrochloric acid.

The method demonstrated herein could be extended to other particles. It may also inspire versatile synthesis strategies towards complex nanostructures with high selectivity.

 

To find out more please read:

Controllable Oligomerization: Defying Step-Growth Kinetics in the Polymerization of Gold Nanoparticles

Xuejun Cheng, Gui Zhao, Yan Lu, Miao Yan, Hong Wang and Hongyu Chen

Chem. Sci., 2018, DOI: 10.1039/C8CC03424A

 

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Pt3Ni-Coated Palladium Nano-branches Outperformed Pt in Catalyzing Ethanol Oxidation

Researchers in China recently developed a new Pd-based catalyst that outperformed Pt, the benchmark catalyst for electrochemical oxidation of ethanol. This catalyst, synthesized by a one-pot chemical reduction method, consists of branched Pd nanocrystals coated with thin Pt3Ni shells.

The ethanol oxidation reaction (EOR) is a typical anode reaction that drives the energy output from fuel cells. Due to its intrinsically slow kinetics, the reaction requires proper EOR catalysts to facilitate the oxidation. Pt-based materials are highly active in promoting EOR, but the scarcity of Pt leads to high costs and demands efficient methods to recycle these materials. In addition, the instable catalytic activity of Pt significantly reduces the lifetime of EOR catalysts containing Pt. Clearly, developing inexpensive EOR catalysts with comparable performance to Pt is meaningful for the affordability and durability of fuel cells.

A research team led by Shuifen Xie at Huaqiao University and Shenzhen Research Institute of Xiamen University in China, have demonstrated a one-pot chemical reduction method of a novel EOR catalyst. This catalyst is made of Pt3Ni-coated Pd nanocrystals as shown in Figure 1. There are three main advantages for this catalyst over the benchmark Pt: Firstly, the core material Pd is more affordable. Secondly, the ultrathin Pt-alloy coating, Pt3Ni, contains relatively less Pt and is reported to exhibit high EOR catalytic activity. Thirdly, the little lattice mismatch between Pt and Pd allows seamless integration of the two metals that is beneficial to preserve the structural integrity and ensure excellent durability.

Figure 1. (a) The schematic illustration showing the key steps of the one-pot chemical reduction method. The catalyst is formed via consecutive reduction of Pd2+, Pt2+ and Ni2+ to Pd nano-branches, Pt nanoparticles and Pt3Ni coatings, respectively. (b) A TEM image of a representative morphology of a branched nanocrystal. (c) Elemental mappings depict that Pt and Ni elements exist mainly in the shell while Pd is in the core.

Electrochemical characterizations revealed that the catalytic performance of the Pt3Ni-coated Pd nanocrystals outperformed those of two commercial catalysts: Pt/C (Pt particles supported on activated carbon) and Pd black (a fine powder elemental Pd). Figure 2a compares the linear-sweep voltammograms of the three samples. The synthesized catalyst showed appreciably enhanced oxidation current at potentials beyond 0.4 V vs. RHE. The histograms in Figure 2b clearly display that the mass activity and the specific activity of the synthesized nanocrystals are the highest. The authors ascribed the superior performance to the high surface area (42.50 m2 g-1), the ultrathin Pt3Ni coating with its {111} crystal planes exposed, and the core-shell configuration.

Figure 2. (a) Linear-sweep voltammograms of the synthesized catalyst (Pd@Pt3Ni/C), Pt/C and Pd black. (b) The comparison of mass activity (i.e. oxidation current normalized to the masses of the catalysts) and specific activity (i.e. oxidation current normalized to the areas of the catalysts) of Pd@Pt3Ni/C, Pt/C and Pd black.

This work signifies the feasibility of Pd-based nano-catalysts as alternatives to Pt towards catalyzing EOR. It is also expected to encourage the effort in developing a diverse array of inexpensive and high-performance catalysts for other reactions pertaining to fuel cells, including but not limited to oxidation of fuels other than ethanol and oxygen reduction reactions.

To find out more please read:

One-Pot Synthesis of Pd@Pt3Ni Core-Shell Nanobranches with Ultrathin Pt3Ni{111} Skins for Efficient Ethanol Electrooxidation

Yuanyuan Wang, Wei Wang, Fei Xue, Yong Cheng, Kai Liu, Qiaobao Zhang, Maochang Liu and Shuifen Xie

Chem. Commun., 2018, DOI: 10.1039/c8cc02816h

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The CO2-Capturing Mechanism of Quaternary Nitrogen-Containing Polymers Revealed Experimentally

A group of scientists from Washington University at St. Louis, USA have disclosed experimentally how CO2 is captured by polymers with quaternary nitrogen cations. Using solid-state nuclear magnetic resonance (NMR), the authors established that CO2 molecules were absorbed as bicarbonate anions (HCO3).

The increasing amount of CO2 has posed a number of concerning environmental issues such as climate change, rising sea level and ocean acidification. Capturing CO2 from the atmosphere is an effective way to lower the CO2 concentration. Recently, a family of polymer absorbents containing quaternary nitrogen functional groups, termed humidity-swing polymers, have been identified as promising absorbents to absorb CO2 directly from air. However, the limited understanding of the chemical mechanism related to their CO2-capturing capability hindered the development of these promising absorbents.

In ChemComm, Yang et al. used solid-state 13C NMR to explore how CO2 molecules were captured and released. Figure 1a presents the NMR spectra of a humidity-swing polymer absorbent itself (top), upon contacting with CO2 (middle) and after releasing CO2 (bottom). The most striking feature is the appearance of an additional sharp peak at a chemical shift of 161 ppm in the middle spectrum, which did not show up in the other two spectra. The authors further studied the shape evolution of the additional peak, with respect to temperature, and concluded that the peak was due to HCO3 anions. Additionally, the authors also identified the presence of hydroxide anions in the absorbent after CO2 was released.

Figure 1. (a) The solid-state 13C NMR spectra of the humidity-swing polymeric absorbent (structure shown in the inset of the middle spectrum) itself (top), upon contacting with CO2 (middle) and after releasing CO2 (bottom). (b) The proposed pathways of how CO2 molecules interact with the quaternary-N anions of the absorbent.

The researchers then proposed the CO2 adsorption-desorption mechanism (illustrated in Figure 1b) based on the experimental results. The storage and release of CO2 depend on the humidity level of the surroundings: When the humidity is low, the polymer absorbs CO2 and forms HCO3 anions; the negative charge of HCO3 is counter-balanced by the neighboring quaternary N cations. When the humidity is increased, HCO3 anions combine with water and decompose to CO2 and hydroxide anions. This proposed pathway does not involve CO32- anions, which differs from the previously-reported mechanisms derived from theoretical simulations.

The published results represent the first set of experimental evidence elucidating how CO2 molecules interact with humidity-swing polymeric absorbents. The acquired mechanistic insight could provide valuable guidelines for the design of CO2 absorbents with ultrahigh absorption capacity.

 

To find out more please read:

Humidity-Swing Mechanism for CO2 Capture from Ambient Air
Hao Yang, Manmilan Singh and Jacob Schaefer
Chem. Commun., 2018, DOI: 10.1039/c8cc02109k

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

In-Situ Electron Paramagnetic Resonance Spectroscopy Revealed the Charge Storage Behavior of Activated Carbon

Recently in Chem. Commun., Wang et al. from University of Manchester and Liverpool John Moores University, U.K. demonstrated that in-situ electron paramagnetic resonance (EPR) spectroscopy was a powerful tool to study the charge storage mechanism of activated carbon.

Activated carbon is a type of microporous carbon used for electrodes of supercapacitors (a family of charge-storage devices similar to batteries). Conventional electrochemical testing techniques (e.g. cyclic voltammetry) are able to evaluate the overall performance of electrode materials but are unable to reveal the charge storage mechanism at the atomic level. Understanding the charge storage mechanism is crucial to guide the design and synthesis of electrode materials with improved performance. During the past decade, the development of numerous in-situ probing techniques has allowed materials researchers to explore the microscopic charge-discharge behaviour of supercapacitor electrodes.

In the published paper, in-situ EPR spectroscopy was used to study the electrochemical properties of activated carbon under different external potentials. EPR is very sensitive to electron spins originating from unpaired electrons that are generated upon charging or discharging electrode materials. This characteristic makes EPR a suitable technique for in-situ studies. To carry out the experiments, the authors designed and constructed a capillary three-electrode testing cell (Figure 1a). This cell was placed in an EPR spectrometer and its activated carbon electrode was connected to an external power source (to apply external potentials to the activated carbon electrode). The authors collected the spectra of the activated carbon electrode at selected applied potentials, an example of which is shown in Figure 1b.

Analysis of the obtained spectra offered important information about how the surface of activated carbon changed at different potentials. Specifically, the authors deconvoluted the signal into two components: the narrow signal and the broad signal corresponding to the blue and red curves in Figure 1b, respectively. The peak intensity of the narrow signal increased drastically when charging the electrode, but remained almost unchanged when altering the testing temperature. This observation suggests that the origin of the narrow peaks was the surface-localized electrons. These localized electrons were likely from the oxidized products (i.e. radicals) of carboxylate and alkoxide groups on the surface of the activated carbon, evolved during the charging process. The broad signal was ascribed to electrons located on aromatic units (e.g. graphene domains) and its intensity was found to be proportional to the number of ions electrically adsorbed on the activated carbon surface.

Figure 1. (a) The structure of the self-built capillary three-electrode cell: CE – counter electrode (Pt wire); RE – reference electrode (Ag/AgCl); WE – working electrode (activated carbon). (b) A typical EPR signal (black) that can be deconvoluted into narrow peaks (blue) and broad peaks (red).

This work highlights EPR spectroscopy as a novel tool for in-situ investigation of the charge-storage mechanism of carbon-based supercapacitor electrodes, and could be potentially extended to study other types of materials. The availability of diverse in-situ techniques is expected to provide more in-depth fundamental understanding that will guide researchers to rationally develop electrodes with optimized performance.

 

To find out more please read:

In-Situ Electrochemical Electron Paramagnetic Resonance Spectroscopy as A Tool to Probe Electric Double Layer Capacitance

Bin Wang, Alistair J. Fielding and Robert A. W. Dryfe

Chem. Commun. 2018, DOI: 10.1039/c8cc00450a

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is an online blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Buckyball’s Hydrogen Spillover Effect at Ambient Temperature Observed Experimentally for the First Time

A group of scientists from Tohoku University, Japan experimentally demonstrated the hydrogen spillover effect of buckyball (a.k.a. fullerene or C60). They achieved this breakthrough using mass spectroscopy, and their findings were published recently in Chem. Commun.

Certain transition metal nanoparticles (e.g. Ru, Pt and Ni) can capture hydrogen molecules. The capture process generally involves three sequential steps. Firstly, hydrogen molecules split into hydrogen atoms on the metal surface. Secondly, the yielded hydrogen atoms migrate on the surface towards substrates under the metal nanoparticles and, finally, these atoms fix onto the substrates. The second step is termed the “spillover effect” (Figure 1a). Previous studies predicted that curved graphene sheets could enhance the hydrogen spillover effect at ambient temperatures, but solid experimental evidence has remained inadequate.

To gather evidence for this prediction, Nishihara et al. studied the material buckyball, a spherical carbon nanosphere that represents an extremely curved graphene sheet. The researchers selected ketjenblack (KB), a type of porous carbon sheet, as the substrate, and deposited Pt nanoparticles (1-3 nm in diameter) and buckyball molecules onto it (Figure 1b). They found that the Pt and buckyball-decorated KB stored a higher amount of hydrogen compared to the Pt-loaded KB. This observation indirectly confirmed the previous prediction, as hydrogen storage capacity may be improved by enhancing the spillover effect.

Figure 1. (a) A schematic illustration showing how a hydrogen molecule is split on Pt surface [process (1)] followed by the spillover effect [processes (2) and (2′)]. (b) A schematic illustration of the structure of Pt and buckyball-decorated KB. The inset panel displays two forms of hydrogen bound to the composite: the physically adsorbed di-hydrogen molecules, and the spillover hydrogen atoms anchored on the KB substrate and buckyballs.

 

The authors then sought time-of-flight mass spectroscopy to obtain more evidence. This spectroscopic technique is capable of identifying molecules with different mass to charge ratios (m/z). As shown in Figure 2, after treating the buckyball and Pt-loaded KB with deuterium molecules (D2), the spectrum (red) exhibited two additional peaks with m/z of ~723.5 and ~724.5 (highlighted by arrows in the figure) compared to those of the buckyball reference (black) and the buckyball and Pt-loaded KB prior to D2 dosage (blue). The authors ascribed these two new peaks to single D atom-adsorbed buckyballs with different amounts of carbon isotopes (12C and 13C). The presence of the two new peaks clearly showed that buckyballs could host hydrogen atoms to enhance the spillover effect. In addition, upon exposing the D-containing buckballs to air, both of the newly-merged peaks disappeared, suggesting that D atom adsorption was reversible.

Figure 2. The time-of-flight mass spectroscopy spectra of buckyball (black), Pt and buckyball-decorated KB before (blue) and after (red) exposure to D2, and after exposure to air (green). Pictures on the right show the molecular structure of a buckyball molecule and two deuterium-incorporated buckyball molecules (with different number of 13C isotope). Deuterium is used to avoid the interference from the 13C isotope.

This work could serve as a reference for future studies of the spillover effect induced by buckyballs interacting with other metal nanoparticles. The increasing availability of in-depth fundamental insight could refine our understanding of ambient-temperature hydrogen storage.

To find out more please read:

Enhanced Hydrogen Spillover to Fullerene at Ambient Temperature

Hirotomo Nishihara, Tomoya Simura and Takashi Kyotani

Chem. Commun. 2018, DOI: 10.1039/c8cc00265g

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Anchoring Arynes on Graphene with Microwave but No Solvents

Recently in ChemComm, an international team from Italy and Spain reported a non-conventional way to anchor arynes onto graphene surface using microwave. Their developed method is fast, efficient, mild and solvent-free.

Attaching functional groups onto graphene surface, i.e. functionalization, allows the physical and chemical properties of graphene to be fine-tuned, such as electrical conductivity and solubility. Conventional solvent-based functionalization strategies usually involve time-consuming reactions and tedious purification steps. The poor suspension stability of graphene in solvents, particularly in polar organic solvents, greatly hinders the overall functionalization efficiency. Therefore, establishing easy and solvent-free functionalization protocols for graphene is highly needed.

M. Prato, A. Criado and coworkers made a breakthrough in addressing this challenge by developing a microwave-assisted functionalization method. Their method to functionalize graphene consists of cycloaddition reactions between few-layer graphene (FLG) and arynes (Figure 1). These reactions proceed by mixing the dry powder of FLG and arylene anhydrides, the precursors of arynes, followed by rapid heating under microwave irradiation. The whole process is solvent-free and occurs within half a minute. It is also applicable to a variety of arynes (Figure 2).

Figure 1. The schematic illustration of the microwave-assisted functionalization of graphene with arynes. This process can be carried out within half a minute and is solvent-free.

Figure 2. A variety of arynes capable of being anchored on graphene surface. 1~6 represent the arylene anhydrides and f-G(7)~f-G(12) are corresponding arynes attached onto graphene.

The most unique feature of the demonstrated method is the dual role of FLG. In addition to being one of the reactants, FLG is capable of absorbing microwave energy, and enables its surface to rapidly reach high temperatures that significantly accelerate the cycloaddition reactions.

This microwave-assisted functionalization method shows great promise as a stepping stone for the fast and efficient modulation of graphene surface and subsequently, the performance of graphene-based electronics.

 

To find out more please read:

Microwave-Induced Covalent Functionalization of Few-Layer Graphene with Arynes Under Solvent-Free Conditions

V. Sulleiro, S. Quiroga, D. Peña, D. Pérez, E. Guitián, A. Criado and M. Prato

Chem. Commun. 2018, DOI: 10.1039/C7CC08676H

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is an online blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Single-Crystalline NiFe-Hydroxide Nanosheets for Catalyzing Oxygen Evolution

A group of scientists led by Prof. Shizhang Qiao has synthesized an oxygen evolution reaction (OER) catalyst combining the merit of low cost, excellent catalytic activity and long lifetime. This OER catalyst is composed of single-crystalline NiFe-hydroxide nanoflakes directly grown on nickel foams. The work has been published recently in ChemComm.

OER, the reaction of producing oxygen gas from water, is an indispensable component of electricity-generation devices using sustainable energy (e.g. fuel cells and photoelectrochemical water splitting cells). OER is usually the bottleneck limiting the overall energy conversion efficiency due to its sluggish kinetics and complex reaction pathways. As such, OER catalysts are needed to accelerate the OER reaction rate. Among the various OER catalysts, noble metal oxides stand out owing to their ultrahigh catalytic activity. However, the “shining” performance is dimmed by their high cost and short lifetime. Thus, obtaining alternatives with comparable OER catalytic activity as well as long-term stability is required to advance the utilisation of sustainable energy.

To address this challenge, the authors turned their attention to a low-cost transition metal, nickel. They developed a hydrothermal method using nickel foams to grow highly crystalline and near-vertically aligned NiFe-hydroxide nanosheets as OER catalysts (Figure 1a). The seamless integration between the hydroxide nanosheets and the nickel substrates reduces the contact resistance and facilitates interfacial electron transfer. The near-vertical orientation (Figure 1b) allows water molecules to fully contact the catalysts. Both of the characteristics render excellent OER catalytic activity. Additionally, the high crystallinity (Figure 1c) ensures the catalysts are robust enough to withstand extensive use without degradation in performance.

Figure 1. (a) The schematic illustration of the synthetic procedures of the NiFe-hydroxide [Fe-Ni(OH)2] nanosheets supported on nickel foams (NF). (b) The scanning electron microscopy image shows the near-vertically aligned nanosheets on a piece of nickel foam. (c) The transmission electron microscopy image reveals the crystallinity of the synthesized catalyst.

The NiFe-hydroxide nanosheets outperform most of the state-of-the-art OER catalysts, including those containing noble metal elements. Specifically, the nanosheets exhibit an onset potential of 1.497 V (Figure 2). The onset potential is a measure of the catalytic activity that equals the magnitude of potential required to yield a current density of 10 mA/cm2 (when appreciable amount of oxygen gas is evolved). Outstandingly, the onset potential of the NiFe-hydroxide is the smallest among the catalysts selected for comparison.

Figure 2. The polarisation curves of different OER catalysts. The onset potential is marked by the dotted line in the inset.

The catalytic activity is also highly stable, with no loss in performance after at least 100 h of measurement. Interestingly, the onset potential further shifts to a lower value of 1.465 V after 100 h. The authors attributed this observation to a “self-activation” process that involves the formation and accumulation of nickel oxyhydroxide (NiOOH) on the surface of the nanosheets.

The hydrothermal method demonstrated here could be used to synthesize other cost-effective crystalline catalysts to develop catalysts for reactions beyond OER, such as hydrogen evolution and carbon dioxide reduction.

To find out more please read:

Free-Standing Single-Crystalline NiFe-Hydroxide Nanoflake Arrays: A Self-Activated and Robust Electrocatalyst for Oxygen Evolution

Jinlong Liu, Yao Zheng, Zhenyu Wang, Zhouguang Lu, Anthony Vasileff and Shi-Zhang Qiao

Chem. Commun. 2017, DOI: 10.1039/c7cc08843d

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tuning the Size of Metal-Organic Framework Crystals by Decoupling Nucleation and Growth Processes

A group of scientists from Tsinghua University in China have made a breakthrough in enhancing the controllability of the metal-organic framework (MOF) crystal size.

MOF represents a family of microporous crystals consisting of metal node-organic ligand coordination networks. They have shown potential in versatile applications including hydrogen storage, catalysis and electrochemical energy storage. Since their performance strongly correlates to the crystal size, synthesizing MOF crystals with tunable sizes and high yields is necessary to allow fundamental studies on the size-performance relationship. Unfortunately, the conventional size-controlling methods either require complex operations or exhibit low yields.

Now in ChemComm, Tiefeng Wang and coworkers demonstrate a method that can easily tune the size of MOF crystals. The mechanism is based on decoupling nucleation and growth processes. Unlike traditional strategies that mingle all metal precursors and organic ligands together in a solvent, this newly developed protocol initially mixes only a small portion of metal precursors with organic ligands. The metal precursors quickly coordinate with surrounding ligands to form small MOF clusters (the “nucleation” stage). Due to the limited supply of the metal precursors, the growth of these clusters into large crystals is unfavorable. Subsequently, the remaining metal precursors are introduced into the cluster-containing solution. The clusters then continue to grow into MOF crystals (the “growth” stage). Because the crystals develop directly from the small clusters (i.e. the seeds), the number of the seeds and the total concentration of the added metal precursors control the resulting MOF crystal size (Figure 1).

 

Figure 1. A schematic illustration of the growth of MOF crystals via a typical conventional method (top) and the reported decoupling method (down).

Using this method, the authors prepared a series of Pt@ZIF-8 MOF crystals (with sizes ranging from 45 nm to 440 nm) and investigated their ability to catalyze the reaction of 1-hexene hydrogenation. The catalytic activity of different sized crystals was quantified, with a linear correlation observed between the size and the activity (Figure 2).

Figure 2. The linear relationship between the Pt@ZIF-8 MOF size (r) and the hydrogenation reaction rate (D). r0 and D0 represent the size and the reaction rate of the smallest MOF (45 nm).

This reported approach is expected to be applicable for synthesizing MOF crystals other than Pt@ZIF-8. The availability of size-tunable MOFs will facilitate mechanistic studies in determining the optimal crystal size for different applications.

To find out more please read:

A General and Facile Strategy for Precisely Controlling the Crystal Size of Monodispersed Metal-Organic Frameworks via Separating the Nucleation and Growth

Xiaocheng Lan, Ning Huang, Jinfu Wang and Tiefeng Wang

Chem. Commun. 2017, DOI: 10.1039/c7cc08244d

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is an online blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

In-Vivo Visualization of Glucose Metabolism with a Two-Color Imaging Technique

A group of scientists from Columbia University in United States have developed a state-of-the-art probing technique that can simultaneously map glucose uptake and incorporation activities in living cells.

Glucose is a ubiquitous “fuel” for most living organisms. Its metabolism, including uptake and incorporation, is vital to sustain the energy consumption of living organisms. Visualization of glucose metabolism is of critical importance for clinical diagnostics and fundamental biological researches. However, current imaging techniques are destructive to living cells, poorly resolved or incapable of probing uptake and incorporation at the same time.

Now in ChemComm, Prof. Min Wei’s research team demonstrates a breakthrough based on a vibrational imaging technique coupled with stimulated Raman scattering microscopy. This technique utilizes two glucose analogues to present the glucose metabolism, the 13C-labelled 3-O-propargyl-D-glucose (3-OPG-13C3) for glucose uptake and the D7-glucose for glucose incorporation. Conventional Raman spectroscopy is unable to distinguish the aforementioned two species due to their overlapping Raman peaks. The authors addressed this challenge by labelling 3-OPG with 13C that exhibits a blue shifted Raman peak, thus separating it from the peak of D7-glucose. Decoupling of the two peaks allows in-vivo imaging and simultaneous observation of glucose uptake and incorporation in cells with sub-cellular resolution.

Figure 1 shows the two-color mapping images collected for human cancer cells, PC-3. The blue (panel a) and red (panel b) areas display the regions where glucose incorporation and uptake are taking place, respectively. The two images can be easily obtained by tuning the wavenumber of the incident light to match with corresponding Raman peak positions. Use of light with other wavenumbers results in the black image (panel c) containing virtually no colored regions, showing the excellent selectivity of the technique. Additionally, this approach differentiates between cancer cells and healthy cells by comparing the blue to red color intensity ratio.

This novel and versatile imaging technique is expected to serve as a useful tool in advanced bio-imaging and future cancer diagnostics.

Figure 1. Two-color mapping images of PC-3 cells highlighting the (a) glucose-incorporation regions (Raman peak: 2133 cm-1) and (b) glucose-uptake regions (Raman peak: 2053 cm-1). (c) An image collected with a wavenumber (2000 cm-1) that does not match with either of the Raman peaks. Scale bar: 20 µm.

 

To find out more please read:

Two-color Vibrational Imaging of Glucose Metabolism Using Stimulated Raman Scattering

Rong Long, Luyuan Zhang, Lingyan Shi, Yihui Shen, Fanghao Hu, Chen Zeng and Wei Min

Chem. Commun. 2018, DOI: 10.1039/C7CC08217G

About the blogger:

Tianyu Liu obtained his Ph.D. in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a web blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Binder-free Integration of Bismuth Nanoflakes onto Nickel Foams for Sodium-ion Batteries

A new type of bismuth-based electrode material for sodium-ion batteries has been synthesized. This electrode consists of bismuth metal nanoflakes seamlessly integrated onto nickel foams. The electrode contains no polymer binders, a crucial component required to retain the structural integrity of most battery electrodes. This binder-free feature improves the amount of charge being stored (i.e. capacity) at fast charging rates.

Sodium-ion batteries are attracting worldwide research efforts as electric energy storage devices, in addition to the prevalent lithium-ion batteries, due to the abundance of sodium. Similar to the preparation of other battery electrodes, fabricating sodium-ion battery electrodes generally requires binders, e.g. polyvinylidene fluoride (PVDF), to hold powdered electrode materials together and glue them to metal supporting substrates. However, the electrically insulating nature of the binders impedes fast electron transport between electrode materials and supporting substrates, consequently degrading the capacity of the batteries at fast charging rates.

Now in ChemComm, researchers from Nankai University & the Collaborative Innovation Center of Chemical Science and Engineering in China demonstrate a bismuth-based electrode material that does not involve a binder. This characteristic is realized by the in-situ growth of bismuth nanoflakes onto nickel foams through a solution-based replacement reaction (Figure 1). Because the nanoflakes grow directly from the nickel foam surface and firmly anchor onto nickel (Figure 2a), the resultant Bi/Ni composite can be directly used as an electrode. Specifically, the bismuth nanoflakes and nickel foam serve as the active material and supporting substrate, respectively.

The Bi/Ni composite exhibited excellent electrochemical performance. It achieved a high capacity of 377.1 mAh/g at a current density of 20 mA/g. Significantly, when the current density increased 100-fold, its capacity could still retain 206.4 mAh/g, which is more than half of the capacity obtained at 20 mA/g (Figure 2b). This outstanding capacity retention is a benefit of the binder-free characteristic that reduces the resistance of electron transport.

The authors then elucidated the working mechanism of the bismuth nanoflakes by in-situ Raman spectroscopy. They concluded that a two-step alloying process was responsible for the charge storage activity.

Figure 1. A schematic illustration showing the synthetic process of the binder-free Bi/Ni electrode. By inserting a piece of nickel foam into an ethylene glycol (EG) solution containing bismuth(III) nitrate, Bi3+ can replace Ni metal, be reduced to Bi metal and deposit on the Ni metal surface.

 

Figure 2. (a) A scanning electron microscopy image of the bismuth nanoflakes. (b) A plot showing the capacity of the Bi/Ni electrode at different current densities.

 

The successful synthesis of the binder-free electrode is expected to encourage future works on the design and synthesis of integrated electrode materials to advance the performance of sodium-ion batteries.

 

To find out more please read:

In situ Synthesis of Bi Nanoflakes on Ni Foam for Sodium-ion Batteries

Liubin Wang, Chenchen Wang, Fujun Li, Fangyi Cheng and Jun Chen

Chem. Commun. 2017, DOI: 10.1039/c7cc08341f

About the blogger:

Tianyu Liu obtained his Ph.D. in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a web blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)