Flow system overcomes reagent incompatibility issues

Elisabeth Ratcliffe writes about a hot Chemical Science article for Chemistry World

Synthesising cyclic carbonates could become easier and more efficient thanks to a sequential flow system developed by scientists in the US.

Cyclic carbonates are used as fuel additives and in lithium-ion batteries, and are key intermediates for pharmaceuticals. However, many current synthesis methods require expensive starting reagents and result in unwanted side products.

The method developed by Tim Jamison, of Massachusetts Institute of Technology in Boston, and coworkers, avoids many of these problems by starting from easily obtainable alkenes, rather than the corresponding epoxides, and the cheap and readily available carbon dioxide. The starting alkene is treated with water and N-bromosuccinimide (NBS), a source of bromide ions, which converts the alkene to a bromohydrin. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), a base, is then added, followed by CO2, leading to the formation of the cyclic carbonate.

Introducing reagents at specific stages prevents them from interacting with each other or with reaction intermediates

 Preliminary experiments revealed that when all the reagents are mixed together, as they would be in a batch system, NBS and DBU tend to react with one another, decreasing their availability and hence the overall yield. The flow system helps to overcome these problems by introducing the reagents sequentially, rather than simultaneously.

Read the full article in Chemistry World»

Read the original journal article in Chemical Science:
Mechanism-guided design of flow systems for multicomponent reactions: conversion of CO2 and olefins to cyclic carbonates
Jie Wu, Jennifer A. Kozak, Fritz Simeon, T. Alan Hatton and Timothy F. Jamison  
Chem. Sci., 2014, Advance Article, DOI: 10.1039/C3SC53422G, Edge Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)