Archive for September, 2022

Chemical Science Reviewer Spotlight – September 2022

To further thank and recognise the support from our excellent reviewer community, we showcase reviewers who have provided exceptional support to the journal over the past year.

This month, we are highlighting Christoforos Kokotos, Joanna Wencel-Delord, Rosana Álvarez Rodríguez and Joaquin Barroso. We asked our reviewers a few questions about what they enjoy about reviewing, their experiences with Chemical Science and also for some tips about how to provide a useful review and also what they look for in a manuscript.

Christoforos Kokotos, University of Athens.  The research group of Christoforos focuses on asymmetric organocatalysis, the organocatalytic activation of small molecules, like H22, for oxidation reactions and organic photochemistry, especially applications in the synthesis of pharmaceuticals, agrochemicals, or the discovery of novel medicinal agents.

Joanna Wencel-Delord, University of Strasbourg. Joanna is interested in developing original, straightforward, and efficient synthetic routes to construct complex (chiral) molecules. Her research focuses on various approaches such as C-H activation, 3d-metal catalysis, and the chemistry of rare hypervalent compounds.

Rosana Álvarez Rodríguez, University of Vigo.  Rosana’s research focuses on stereoselective synthesis of biologically active natural products through the use of novel synthetic tools with their mechanisms studied through both experimental and computational techniques.

Joaquin Barroso, National Autonomous University of Mexico. Joaquin’s group uses computers to pose and solve the appropriate equations that describe the chemical reality of various phenomena, with an emphasis in trying to understand how molecules transfer energy between them once they absorb sunlight during photosynthesis.

 

What encouraged you to review for Chemical Science?

Christoforos Kokotos:  Chemical Science is a high-quality interdisciplinary journal that publishes cutting edge research, and usually publishes research that I am highly interested in. Reviewing gives you the opportunity to help the authors improve their work and as a reviewer you can ask for clarifications in points that are not clear in the original submission. Also, I have a special connection to Chemical Science, since I was a member of David MacMillan’s group during the period that Chemical Science was preparing to get launched and I remember the excitement and thrill in the research group. [Editor’s note: David MacMillan was the first Editor-in-Chief of Chemical Science and worked closely with the team for the launch of the journal]

Rosana Álvarez Rodríguez: Chemical Science is a scientific journal of international prestige that publishes full articles of high impact. I especially like the Edge article format and the broad selection of published articles.

 

What do you enjoy most about reviewing?

Joanna Wencel-Delord: What I enjoy the most is to take time to carefully think about projects of other people and having the possibility to give some suggestions and request additional explanations. I also find that the reviewing process also helps you to grow as scientist and gain more experience.

 

What are you looking for in a paper that you can recommend for acceptance in Chemical Science?

Joanna Wencel-Delord: What I’m really looking for, is to be somehow surprised by the originality of concepts and unprecedented reactivity or properties presented in a clear manner and supported by solid experimental evidence. And, I would say that a well written and nicely illustrated introduction specifying the underlying project is one of the cornerstones.

Joaquin Barroso: Clarity. We all do research based on our own interests and ideas, so for me it’s never about ranking or comparing manuscripts for which one is better. Thus, when a manuscript is written in such a way that one can trek and journey along with the authors through their train of thought, and become convinced about their conclusions, that’s when I become excited about reading a manuscript.

 

What advice would you give a first-time author looking to maximise their chances of successful peer review?

Christoforos Kokotos:  First-time authors are always helped by advice given by senior colleagues. This helped me a lot at the beginning of my career. So, do seek advice from senior colleagues. The introduction part is extremely crucial and authors should provide a thorough overview of the field and present, in a clear manner, the goals of their study and how it correlates with existing knowledge. Also, I usually find a scheme at the beginning which summarizes previous work and current work extremely helpful, especially if it shows how current work improves and solves problems existing in the literature.

Rosana Álvarez Rodríguez: I think that the most important thing in a good article is scientific rigour, clarity when describing the result, and novelty. A good article should also be easy to read.

 

How has your approach to peer reviewing changed over time?

Joanna Wencel-Delord:  Over time I have been putting growing importance on fair and balanced citations of the previous contributions in the field and clear statements of the novelty and originality of the submitted manuscripts.

 

A final specific question for Joaquin Barroso, whose blog helped me immensely when I was studying for my PhD in computational chemistry; Have you found the experience of providing information, tutorials and guides on your blog helpful when reviewing papers? For example, with determining how to communicate points or suggest improvements for a paper?

Joaquin Barroso: Absolutely, I know how hard it is to make a point come across. In my blog I try to teach people how to perform various kinds of calculations in computational chemistry, so clarity, brevity, and specificity are key.

 

Tune in next month to meet our next group of #ChemSciReviewers!

 

If you want to learn more about how we support our reviewers, check out our Reviewer Hub.

Interested in joining our ever-growing reviewer community? Apply here now!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A big shift for understanding molecular structure

A single molecule magnet could help us understand the biochemistry of health and disease

 

A single molecule that behaves like a powerful magnet could help chemists determine the structure of many other molecules. Researchers based in Italy and Brazil describe the development and potential of their unusually powerful Nuclear Magnetic Resonance (NMR) shift agent in the open access journal Chemical Science.

NMR uses a strong magnetic field to split the spin levels of the nuclei at the centre of some atoms. Monitoring the splitting can reveal the chemical environment surrounding individual atoms, allowing the structure of entire molecules, including large biological macromolecules to be determined.

NMR is based on the same physical principles as medical MRI imaging, but instead of generating images of bodies it creates graphical read-outs of atomic interactions that can be readily deciphered by experts. It has been a fundamental tool of chemistry research since long before the widespread application of MRI imaging.

One problem, however, is that the signals from atoms in large molecules can overlap and interfere in ways that blur the data. This can be resolved by introducing a tiny magnetic tag into a region of interest within a large molecule. The magnetism of the tag shifts the signals from nearby atoms in a predictable way, separating them out from signals from other regions that are not of immediate interest.

The tags are called shift agents and many are available, but researchers are seeking more powerful and effective shift agents to make NMR signals ever clearer and allow them to reveal new details of molecular structure within larger molecules.

The researchers in Italy and Brazil found inspiration for their new shift agent in an unusual place – chemicals used in research towards quantum technologies.

“By searching molecular materials designed for the miniaturisation of information storage and quantum technologies, we have identified and re-designed a molecule that shifts the NMR signals of the neighbouring atoms twice as much as the currently used molecules,” says researcher Roberta Sessoli at the University of Florence. Sessoli and her colleagues in Italy collaborated with researchers at the Federal University of Parana, Brazil.

The molecule they devised has a cage-like arrangement of organic (carbon-based) chemical groups holding an atom of the rare-earth element dysprosium at its centre. It was produced by a relatively simple chemical modification that hugely increased the desirable magnetic properties of the molecule the team began with. Experiments and computational modelling showed that this design modification ensures the new shift agent has a very high and directional magnetic field while being sufficiently stable to be used in solution at room temperature.

The researchers hope that their shift agent can contribute to the worldwide effort to understand the structure of the very complex biomolecules that control the chemistry of life.

“The more we can learn about the structure and functions of proteins, for example, the better and faster we will be able to design new therapies for old and new diseases,” Sessoli says.

Chemical Science is open and free for both readers and authors.

 

Article details:

Santana, F. S. “A dysprosium single molecule magnet outperforming current pseudocontact shift agents.” Chemical Science, 2022, 13, 5680-5871

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Growing opportunities for semiconductors

Thin films of novel semiconductors could open a new window for optoelectronics

An international research team describe how to make thin films of semiconductor materials composed of calcium copper and phosphorus (CaCuP) in the open access journal Chemical Science.

“We have synthesised CaCuP thin films for the first time, and found them to be semiconductors with very high p-type electrical conductivity,” says Andrea Crovetto at the Technical University of Denmark. He worked on the research with colleagues in the UK, USA and Germany.

Crovetto explains that p-type conductivity (p for positive) is a form of semi-conduction in which electric current is carried by the movement of positively charged “holes” rather than by the mobile electrons of n-type (n for negative) conductivity. “The holes can be thought of as bubbles of missing electrons moving around a sea of inactive electrons,” he says.

High performance and transparent p-type conducting materials are keenly sought by researchers as they are expected to offer improved efficiency and new design opportunities for optoelectronic devices that work by inter-converting light and electrical energy in either direction. Applications could include solar cells generating electrical power, sensors driven by or responding to light, and also transparent electronics.

The challenge to find efficient p-type conducting films inspired Crovetto to write a research proposal and to visit the group led by Andriy Zakutayev at the National Renewable Energy Laboratory in the USA. He knew that Zakutayev’s team had a unique growth chamber that could create a wide range of phosphide films. He also sought guidance and assistance from David Scanlon at University College, London, UK, who was an expert on the theoretical aspects CaCuP phosphide films. His is the type of work that had predicted such films could have novel and very useful characteristics.

The researchers and other colleagues then collaborated to predict in more detail the properties of specific CaCuP films and then eventually to make and test them. PhD student Joe Willis from Scanlon’s group led this new round of theoretical predictions.

“CaCuP had never been made before as a thin film and I was afraid it might not be stable in air, so it was exciting to finally see it synthesised and find that it was not degrading when taking it out of the growth chamber,” says Crovetto.

The electrical properties proved to be close to what was expected. One challenge for the future, however, is to make the films more transparent than was initially achieved. Crovetto says he was disappointed to see that the first films made were not as transparent as the team had hoped. They believe that this might be resolved by future developments in the chemistry of growing the films, which will be a priority task for their ongoing investigations.

Crovetto says that combining transparency with good p-type electrical conduction is not easily achieved using conventional materials like oxides or binary semiconductors. Successful incorporation of good transparency into the new CaCuP could therefore be a very significant step forwards. “Our work could open up a new field of phosphide materials discovery,” he concludes.

Chemical Science is open and free for both readers and authors.

Article details:

Willis, J. et al:  Prediction and realisation of high mobility and degenerate p-type conductivity in CaCuP thin films Chemical Science (2022).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)