Archive for the ‘Uncategorized’ Category

Spotlight on Antoine Buchard: 2018 Polymer Chemistry Emerging Investigator

This week’s issue of Polymer Chemistry is our 2020 Emerging Investigators issue, which contains articles from polymer chemistry researchers in the early stages of their independent careers and is accompanied by an Editorial from Editor-in-Chief Professor Christopher Barner-Kowollik. To celebrate this issue we are delighted to feature the profile of Dr Antoine Buchard, who published in our 2018 Emerging Investigators issue. Below, Antoine talks about his research journey and his feelings towards Polymer Chemistry!

Dr Antoine Buchard & Dr Ulrich Hintermair from The Centre for Sustainable Chemical Technologies were photogrpahed at a coffee meeting in The Edge for the University of Bath Alumni Relations Impact Report 2018. Shoot ref: 29456 Client: Rachel Skerry – Alumni Relations. Shoot Dates 8th and 9th November 2017

“I started my research career as a student working on new metal complexes for homogeneous catalysis, and only really ventured into polymer chemistry when some of our complexes showed interesting activities in the ring-opening polymerisation of lactide. Since then, I have been really interested in polymer chemistry because it is an incredibly diverse area, which I think offers a lot of creative space for both fundamental and applied work.

Today, using renewable feedstocks to make novel polymers is the underlying theme of my research program. I am particularly interested in using natural sugars as a sustainable, highly diverse and functionalisable resource to build polymers with interesting properties, including potentially less impact on the environment.  Our work addresses all aspects of the development of new polymers, from the synthesis of novel monomers, the design of new polymerisation catalysts and processes (including heterogeneous (ref Polym. Chem., 2019,10, 5894-5904)), detailed mechanistic and structure-properties studies, up to the applications of the polymers themselves. Polymer Chemistry is an ideal publication platform for this research, because of the broad scope of the journal, the diversity and expertise of the editorial team, as well as the breadth of article types possible.

Our group have for example recently discovered a method that replaces phosgene with carbon dioxide for the synthesis of cyclic carbonate monomers. We have successfully applied this protocol to various sugar derivatives, including deoxyribose (ref Polym. Chem., 2018,9, 1577-1582) and thymidine (ref Polym. Chem., 2017,8, 1714-1721) and developed promising tuneable, biocompatible and biodegradable polymers, which were also tested as tissue engineering scaffolds for regenerative medicine.

We took the opportunity of the 2018 Emerging Investigator issue to explore slightly different chemistry than usual and investigate the effect of changing some oxygen atoms with sulfur in the backbones of some of our sugar-based polycarbonate (ref Polym. Chem., 2018,9, 1577-1582). To this day it is still unclear! But along the way, we developed some new methodology for use of CS2 in the cyclothio-carbonation of the trans 1,3-diol motif of ribofuranoses, and isolated the first examples of cyclic xanthate monomers derived from natural sugars. Using controlled ring-opening polymerisation, regular poly(xanthate) and alternating poly(trithio-alt-thiocarbonate) species were obtained, and we showed that the sugar backbone influenced greatly the regioselectivity of monomer opening. These polymers formed a new family of degradable sulfur-containing sustainable polymers that attracted some attention from material scientists, and that we are still investigating today and hoping to report on further soon. Featuring in the 2018 Emerging Investigator issue was a great recognition and reward for the work done in my group over the past few years, and has spurred us to keep working in this area.

I am really looking forward to the 2020 Emerging Investigator issue of Polymer Chemistry. I am always curious to discover newcomers in the field and how they envisage the field. With the biennial Pioneering Investigators issue, these issues really set themselves apart from regular issues. I have found that authors usually want to rise to the challenge and report especially exciting results, so it is often a great read!”

 

Read Antoine’s Polymer Chemistry papers below!

Polymer-supported metal catalysts for the heterogeneous polymerisation of lactones
Ioli C. Howard, Ceri Hammond and Antoine Buchard
Polym. Chem., 2019,10, 5894-5904

Polymers from sugars and CS2: synthesis and ring-opening polymerisation of sulfur-containing monomers derived from 2-deoxy-D-ribose and D-xylose
Eva M. López-Vidal, Georgina L. Gregory, Gabriele Kociok-Köhn and Antoine Buchard
Polym. Chem., 2018,9, 1577-1582 (Emerging Investigator 2018 Issue)

CO2-Driven stereochemical inversion of sugars to create thymidine-based polycarbonates by ring-opening polymerisation
Georgina L. Gregory, Elizabeth M. Hierons, Gabriele Kociok-Köhn, Ram I. Sharma and Antoine Buchard
Polym. Chem., 2017,8, 1714-1721

Polymers from sugars and CO2: ring-opening polymerisation and copolymerisation of cyclic carbonates derived from 2-deoxy-D-ribose
Georgina L. Gregory, Gabriele Kociok-Köhn and Antoine Buchard
Polym. Chem., 2017,8, 2093-2104

 

Biography

Antoine is a Royal Society University Research Fellow and Reader in Chemistry within the Centre for Sustainable and Circular Technologies (CSCT) at the University of Bath (UK). His research interests include novel chemical transformations and use in catalysis of renewable resources for the synthesis of sustainable polymers and their applications. He is also a member of the UK Catalysis Hub.

Antoine studied at the École Polytechnique in France, obtaining the École Polytechnique’s Diploma and a Master’s degree in chemistry in 2006. He also completed his PhD at the Ecole Polytechnique in 2009, under the supervision of Prof Pascal Le Floch. Antoine was then a Postdoctoral Research Assistant at Imperial College with Prof Charlotte Williams. He worked Air Liquide R&D before returning to academia in 2013, as a Whorrod Research Fellow within the CSCT at the University of Bath.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Author of the Month: April Kloxin

April M. Kloxin, Ph.D., is an Associate Professor in Chemical & Biomolecular Engineering and Materials Science & Engineering at the University of Delaware (UD) and a member of the Breast Cancer Research Program at the Helen F. Graham Cancer Center and Research Institute in the Christiana Care Health System.  She obtained her B.S. and M.S. in Chemical Engineering from North Carolina State University and Ph.D. in Chemical Engineering from the University of Colorado, Boulder, as a NASA Graduate Student Research Program Fellow.  She trained as a Howard Hughes Medical Institute postdoctoral research associate at the University of Colorado before joining the faculty at UD in 2011. Her group aims to create unique materials with multiscale property control for addressing outstanding problems in human health. Her research currently focuses on the design of responsive and hierarchically structured soft materials and development of controlled, dynamic models of disease and regeneration.  Her honors include the Biomaterials Science Lectureship 2019, ACS PMSE Arthur K. Doolittle Award 2018, a Susan G. Komen Foundation Career Catalyst Research award, a NSF CAREER award, and a Pew Scholars in Biomedical Sciences award.

What was your inspiration in working with polymers?

I have always enjoyed building things and had a desire to use those skills to help people.  I discovered my passion for using chemical approaches to build soft polymeric materials possessing unique and useful properties as an undergraduate and Master’s student at North Carolina State University (NCSU).  At NCSU, I had the opportunity to work in a collaborative environment with many extraordinary friends and colleagues having great polymer science and engineering expertise, including my MS thesis advisors Profs. Rich Spontak and Stuart Cooper.  This experience helped me understand the connection between molecular design and synthetic approaches for building polymeric materials with specific properties for a desired application.  I had the opportunity to fully realize and direct this passion working at the interface between polymeric materials and biological systems under the outstanding advisement and mentorship of Prof. Kristi Anseth at the University of Colorado, Boulder, for my Ph.D. and with the many remarkable researchers in her group and at the University.


What was the motivation behind your most recent Polymer Chemistry article?

From a biological perspective, my group has a focus on understanding how changes in the structure, mechanical properties, and compositions of tissues in the human body that occur upon injury influence the function and fate of key cells in healing and disease.  In this context, we have been interested in building synthetic mimics of these complex systems and processes, and we wanted to establish simple yet effective approaches for controlling the density and stiffness of soft materials when and where desired for hypothesis testing.  In the Polymer Chemistry manuscript, we were inspired by the work of Prof. Matt Becker (Duke University) amongst others demonstrating how the rate of formation of water-swollen polymer networks, hydrogels, could be used to control defect formation, network heterogeneity, and thereby the mechanical properties of the resulting materials.  We hypothesized that the rate-based control of properties that others observed with catalyzed step growth reactions was translatable to a photo-polymerized system, affording the implementation of a variety of photochemical controls (e.g., wavelength, intensity, time).  In particular, by selecting a wavelength of light that was not centered at the maximum absorption of the photoinitiator, we were better able to control the rate of photopolymerization with an accessible bench-top visible light LED system and thereby defect formation.  We then saw an opportunity to exploit dangling-end defects that were generated with this rate-based approach to increase crosslink density and ‘stiffen’ these materials with a secondary photopolymerization.  We are excited about the potential that this light-triggered rate-based approach for controlling mechanical properties of polymer networks has for a number of applications, including our on-going studies of cell response to matrix stiffening.


Which polymer or materials scientists are you most inspired by?

Oh, there are so many! I am especially inspired by the work and leadership of Prof. Paula Hammond (MIT) and Prof. Kristi Anseth, who continue to blaze trials at the interface between polymers, materials, and biology to solve complex problems, and Prof. Chris Bowman (University of Colorado, Boulder) and the late Prof. Charlie Hoyle (University of Southern Mississippi), who have pioneered the use of light-triggered step growth reactions for creating polymeric materials with diverse and robust properties.


Can you name some up and coming polymer chemists who you think will have a big impact on the field?

It is an exciting time in polymer chemistry with many excellent researchers working from different perspectives to advance not only the field of polymer chemistry, but also to make fundamental breakthroughs that have an impact in biology, medicine, and energy.  Selecting just a few is difficult in this context.  A few that come to mind at the moment whose work I find particularly inspiring are Prof. Aaron Esser Kahn (University of Chicago) in biomolecular design of polymeric materials for rewiring the immune system, Prof. Dominik Konkolewicz (Miami University Ohio) in bioconjugations and dynamic covalent chemistries with polymeric materials, Prof. Rachel A. Letteri (University of Virginia) in peptide-polymer conjugates for multi-scale and dynamic properties, and my own new colleague Prof. Laure Kayser (University of Delaware) in conducting and semiconducting polymers.


How do you spend your spare time?

I enjoy making things, from designing materials at work to preparing satisfying meals in the kitchen at home.  Breakfast foods are my favorite, and I have different recipes that I continue to hone on weekends for quick meals during the week.  I also love being outside walking, hiking, or running with my friends or my husband and our two sons, particularly in the beautiful early autumn weather we currently are having.


What profession would you choose if you weren’t a chemist?

My obsession with the complexity of biological systems and improving human health would keep me in science and engineering, whether in molecular biology or bioinformatics or more applied in medicine.

 

Read April’s recent Polymer Chemistry article now for FREE until 31st October!


Rate-based approach for controlling the mechanical properties of ‘thiol–ene’ hydrogels formed with visible light

 

The mechanical properties of synthetic hydrogels traditionally have been controlled with the concentration, molecular weight, or stoichiometry of the macromolecular building blocks used for hydrogel formation. Recently, the rate of formation has been recognized as an important and effective handle for controlling the mechanical properties of these water-swollen polymer networks, owing to differences in network heterogeneity (e.g., defects) that arise based on the rate of gelation. Building upon this, in this work, we investigate a rate-based approach for controlling mechanical properties of hydrogels both initially and temporally with light. Specifically, synthetic hydrogels are formed with visible light-initiated thiol–ene ‘click’ chemistry (PEG-8-norbornene, dithiol linker, LAP photoinitiator with LED lamp centered at 455 nm), using irradiation conditions to control the rate of formation and the mechanical properties of the resulting hydrogels. Further, defects within these hydrogels were subsequently exploited for temporal modulation of mechanical properties with a secondary cure using low doses of long wavelength UV light (365 nm). The elasticity of the hydrogel, as measured with Young’s and shear moduli, was observed to increase with increasing light intensity and concentration of photoinitiator used for hydrogel formation. In situ measurements of end group conversion during hydrogel formation with magic angle spinning (MAS 1H NMR) correlated with these mechanical properties measurements, suggesting that both dangling end groups and looping contribute to the observed mechanical properties. Dangling end groups provide reactive handles for temporal stiffening of hydrogels with a secondary UV-initiated thiol–ene polymerization, where an increase in Young’s modulus by a factor of ∼2.5× was observed. These studies demonstrate how the rate of photopolymerization can be tuned with irradiation wavelength, intensity, and time to control the properties of synthetic hydrogels, which may prove useful in a variety of applications from coatings to biomaterials for controlled cell culture and regenerative medicine.

 


About the Webwriter

Simon HarrissonSimon Harrisson is a Chargé de Recherche at the Centre National de la Recherche Scientifique (CNRS), based in the Laboratoire des IMRCP in Toulouse. His research seeks to apply a fundamental understanding of polymerization kinetics and mechanisms to the development of new materials. He is an Advisory Board member for Polymer Chemistry. Follow him on Twitter @polyharrisson

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Polymer Chemistry in 2018

Outstanding Reviewers for Polymer Chemistry in 2018

We would like to highlight the Outstanding Reviewers for Polymer Chemistry in 2018, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Professor Cyrille Boyer, University of New South Wales ORCiD: 0000-0002-4564-4702

Dr Sophie Guillaume, Institut des Sciences Chimiques de Rennes ORCiD: 0000-0003-2917-8657

Dr Xiaoyu Huang, Shanghai Institute of Organic Chemistry ORCiD: 0000-0002-9781-972X

Professor Dominik Konkolewicz, Miami University ORCiD: 0000-0002-3828-5481

Dr Vincent Ladmiral, ICGM ORCiD: 0000-0002-7590-4800

Dr Zachariah Page, University of Texas at Austin ORCiD: 0000-0002-1013-5422

Professor Felix Schacher, Friedrich Schiller University Jena ORCiD: 0000-0003-4685-6608

Professor Takeshi Shinono, Hiroshima University ORCiD: 0000-0002-1118-9991

Professor Lin Yuan, Soochow University ORCiD: 0000-0001-6966-8584

Professor Youliang Zhao, Soochow University ORCiD: 0000-0002-4362-6244

We would also like to thank the Polymer Chemistry board and the research community for their continued support of the journal, as authors, reviewers and readers.

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé.  You can find more details in our author and reviewer resource centre

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

European Biopolymer Summit 2019

The 6th Edition of ACI’s European Biopolymer Summit will be taking place on 13th – 14th February 2019 in Ghent, Belgium.

The two day event specially designed to bring together senior executives, key industry experts, researchers and bioplastic manufacturers, to exchange and share their experiences and research results on all aspects of bioenvironmental polymer engineering, most recent innovations, trends and concern as well as solutions adopted in the sector.

Key topics include:

  • Evaluating Current Environmental Projects And Regulations Within The Biopolymer Industry
  • Assessing The Feedstock’s Landscape For The Biopolymers’ Production
  • Focusing On Biopolymers in The Circular Economy
  • Elaborating On The Application Of Biopolymers From Peoples’ And Planet’s Perspective
  • Introducing New Technologies In Processing New Bio-Based Materials
  • Brand Owners Perspective On The Use And Application Of Biopolymers
  • Focusing On The Basic Understanding Of Biodegradability
  • Assessing The Biobased New Content
  • Analysing The Impact Of Biobased Plastics On The CO2 Reduction
  • Changing Consumer Preference Towards Eco-Friendly Packaging
  • Assessing The End-Of-Life Of Materials, Through The Life Cycle Assessment

A £255 discount is available for all participants until January 31st. Register now

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Focus on: Antimicrobial polymers

Antimicrobial agents kill or inhibit the growth of microorganisms, and can be sub-divided into several classes depending on the type of microorganism they target. Sub-divisions include, antibacterial, antifungal, antiviral and antiparasitic agents. In particular, antibacterial agents are incredibly important worldwide, with the emergence of multi-drug resistant bacteria. Antibiotic-resistant infections are becoming an increased health and economic burden on society. As such the development of new antibacterials continues to be paramount to limiting the spread of multi-drug resistant bacteria.

This month we focus on three articles published in Polymer Chemistry which have reported the use of antimicrobial polymers. In each case the polymers reported have antibacterial properties, and in one article polymers were also investigated for their antifungal properties.

 

 

1. Cationic peptidopolysaccharides synthesized by ‘click’ chemistry with enhanced broad-spectrum antimicrobial activities
Yajuan Su, Liang Tian, Meng Yu, Qiang Gao, Dehui Wang, Yuewei Xi, Peng Yang, Bo Lei, Peter X. Ma, Peng Li
Polym. Chem., 2017, 8, 3788-3800; DOI: 10.1039/C7PY00528H

Cationic peptidopolysaccharides were prepared through the grafting of ε-poly-L-lysine (EPL) to a chitosan (CS) backbone by thiol-ene “click” chemistry. The resulting CS-g-EPL polymers were assessed for their antimicrobial activity against Gram negative bacteria, Gram positive bacteria and fungi, which showed broad-spectrum antimicrobial activity. In addition the hemolytic activity of the polymers was determined, and the lead candidate was further investigated for it’s biocompatability.

2. Astaxanthin-based polymers as new antimicrobial compounds
S. Weintraub, T. Shpigel, L. G. Harris, R. Schuster, E. C. Lewis, D. Y. Lewitus
Polym. Chem., 2017, 8, 4182-4189; DOI: 10.1039/C7PY00663B

Astaxanthin (ATX) is an organic pigment produced by fungi and algae, possessing various therapeutic properties. Polyesters were prepared using carbodiimide-mediated coupling of ATX, which is a diol, with alkyl- and PEG-diacids. The diacid used influenced the resulting physico–chemical–mechanical properties of the polymers. Antibacterial activity was observed against three strains of bacteria, including MRSA, and the materials were found to be non-toxic in an in vivo wound healing model.

3. Bio-inspired peptide decorated dendrimers for a robust antibacterial coating on hydroxyapatite
Yaping Gou, Xiao Yang, Libang He, Xinyuan Xu, Yanpeng Liu, Yuebo Liu, Yuan Gao, Qin Huang, Kunneng Liang, Chunmei Ding, Jiyao Li, Changsheng Zhao, Jianshu Li
Polym. Chem., 2017, 8, 4264-4279; DOI: 10.1039/C7PY00811B

The authors report the use of a salivary statherin protein inspired dendrimer, for use as an antibacterial coating for implanted biomaterials. A peptide sequence was coupled to the surface of a G4 PAMAM dendrimer, by Michael addition. The materials showed adsorption to hydroxyapatite surfaces with sufficient binding strength to survive washing. The adsorbed dendrimers endowed antimicrobial properties observed by an inhibition of biofilm formation and through in vivo experiments.

 

Read these articles for free until September 10th


About the webwriterFiona Hatton

Dr. Fiona Hatton is a web writer for Polymer Chemistry. She is currently a postdoctoral researcher in the Armes group at the University of Sheffield, UK. Find her on Twitter: @fi_hat

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Focus on: Boron Functional Polymers

This month we take a look at three articles published in Polymer Chemistry reporting the use of boron, either as boron-functional polymers or polymerisation catalyst. Boron is an interesting element, essential to life, and has mainly been investigated in the field of polymer chemistry through boronic acid, organoborate and carborane functional polymers. The incorporation of boronic acid into various polymers is of interest due to its responsiveness to pH, and ability to bind 1,2- and 1,3-diols resulting in anionic boronate ester complexes. This has been probably most widely investigated as materials for the detection of glucose which has broad biomedical implications.

The first two articles here focus on the incorporation of boronic acid into polymeric materials, whilst the final article presents the use of a boronate-urea as a co-catalyst for ring opening polymerisation.

ToC figure

1. Bioinspired synthesis of poly(phenylboronic acid) microgels with high glucose selectivity at physiological pH
Qingshi Wu, Xue Du, Aiping Chang, Xiaomei Jiang, Xiaoyun Yan, Xiaoyu Cao, Zahoor H. Farooqi, Weitai Wu
Polym. Chem., 2016, 7, 6500-6512; DOI: 10.1039/C6PY01521B

Here, poly(phenyl boronic acid) microgels were prepared through the free radical polymerisation of 4-vinylphenylboronic acid and a cross-linker in the presence of a surfactant. The microgels swelled in the presence of glucose (0-30 mM) at physiological pH (7.4), with an enhanced swelling ratio when compared to other monosaccharides, and a highly selective glucose-dependant fluorescence emission. These materials showed potential for use as sensors for glucose detecting.

2. Synthesis of novel boronic acid-decorated poly(2-oxazoline)s showing triple-stimuli responsive behavior
Gertjan Vancoillie, William L. A. Brooks, Maarten A. Mees, Brent S. Sumerlin, Richard Hoogenboom
Polym. Chem., 2016, 7, 6725-6734; DOI: 10.1039/C6PY01437B

The authors describe boronic acid functional poly(2-alkyl-2-oxazoline)s through the cationic ring opening copolymerisation of 2-n-propyl-2-oxazoline and a methyl ester oxazoline, followed by subsequent post-polymerisation modification to functionalise the polymer with boronic acid moeities. The subsequent polymers exhibited LCST behaviour, with pH and glucose concentration dependancy for the thermal transitions, highlighting possible applications in drug delivery, for example.

3. Internal Lewis pair enhanced H-bond donor: boronate-urea and tertiary amine co-catalysis in ring-opening polymerization
Songquan Xu, Herui Sun, Jingjing Liu, Jiaxi Xu, Xianfu Pan, He Dong, Yaya Liu, Zhenjiang Li, Kai Guo
Polym. Chem., 2016, 7, 6843-6853; DOI: 10.1039/C6PY01436D

In this article, the use of a boronate-urea (BU)  has been presented as a Lewis pair enhanced H-bond donor for the co-catalysis of the ring opening polymerisation of ʟ-lactide. The polymerisations reached high conversions and the resultant polymers exhibited controlled molecular weights and low dispersites. The BU was shown to be mild, tunable and compatible with several tertiary amines, and more efficient than a common urea.

—————-

About the webwriterFiona Hatton

Dr. Fiona Hatton is a web writer for Polymer Chemistry. She is currently a postdoctoral researcher in the Armes group at the University of Sheffield, UK. Find her on Twitter: @fi_hat

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Dr. Damien Quemener

Dr. Damien Quemener gained his Pd.D in 2005 in the “Laboratoire de Chimie des Polymères Organiques” at Bordeaux University (France), and was a postdoctoral fellow at the University of New South Wales (Center for Advanced Macromolecular Design) in Sydney, Australia until 2006. He joined Montpellier University in 2007 as an Associate Professor, working at the “Institut Europeen des Membranes” in Montpellier, France. He works at the interface between chemistry and physical chemistry of polymers and membranes with the goal of preparing new autonomous and dynamic porous materials.

What was your inspiration in becoming a chemist?

When I was at junior high school, I gained work experience in a medical laboratory, where I undertook simple and automatic analyses. I was fascinated by the fact that a simple colour change could give you very important results in the quest of a medical diagnostic. But right after I was also frustrated that I didn’t understand the theory beyond that so I decided to study chemistry not to change the world but to simply have a better understanding of it.

What was the motivation to write your Polymer Chemistry article?

Filtration membranes are now everywhere and are recognised as a key technology, for example in water purification. Classical membranes are designed to be highly stable towards mechanical and chemical stresses. We decided to take the opposite strategy in saying that a membrane should be unstable but controlled, in order to make it possible to adapt to any environmental changes. Therefore we have prepared a membrane from block copolymer micelles responsive to water pressure, pH or UV radiation.

Why did you choose Polymer Chemistry to publish your work?

Well, Polymer Chemistry is quite a new and very dynamic journal having a strong impact in the polymer community, and also because it’s a very quick way to publish hot results since the time to publication is short.

In which upcoming conferences may our readers meet you?

This year, I might attend Euromembrane 2015 on the 6-10. September 2015 in Germany but my plans are not yet finalised.

How do you spend your spare time?

Apart from my work, I love to spend my free time with my family since my two boys keep me connected to the day to day reality. I’m also a runner and I’m trying to run two marathons every year, my most recent one was Paris in April.

Which profession would you choose if you were not a scientist?

I would definitely be an architect and build modern style houses since I love to see how something drawn on a piece of paper can be transferred to life-size scale. That’s a common occurrence in the role of a researcher to.


Stimuli responsive nanostructured porous network from triblock copolymer self-assemblies

Zineb Mouline, Mona Semsarilar, Andre Deratani and Damien Quemener

An ABA triblock amphiphilic copolymer is synthesized using RAFT chemistry. The self-assembled micelles of this copolymer are then used to prepare nano-organized porous films that could be used as filtration membranes. In this work a novel strategy is developed to build the nanostructures and perform their self-assembly using reversible and non-covalent interactions to create free volume between the micelles, thus giving tuneable porosity to the film. The self-assembly of poly(styrene)-b-poly(phenylboronic acid)-b-poly(styrene) block copolymer, occurs at high concentration through solvent evaporation, which induces a progressive decrease of the inter-micellar distance, and results in the formation of an in situ network of micelles and the final porous film. Subsequent permeability tests were conducted under different stimuli (pH and UV), generating cross-linking and chemical exchange reactions, to ensure the best balance between permeability and mechanical strength. This work highlights an original strategy for pore size control, and provides new insights towards the design of stimuli-responsive materials.


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an Associate Professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and Deputy Director of the Australian Centre for NanoMedicine.


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry welcomes new Associate Editor Emily Pentzer

We are delighted to welcome our newest Polymer Chemistry Associate Editor: Emily Pentzer (Case Western Reserve University, USA).

Emily will start her role as Associate Editor on 1 July 2015.

Emily Pentzer Polymer Chemistry

Emily obtained a Bachelor of Science in Chemistry from Butler University, USA in 2005. She then moved to Northwestern University, USA where she completed her PhD in 2010 under the supervision of Professor SonBinh T. Nguyen working on the development of new monomers for ring-opening metathesis polymerisation. Between 2010 and 2013 she was a postdoctoral researcher at the University of Massachusetts Amherst, USA where she investigated the synthesis and assembly of n-type and p-type materials for organic photovoltaic applications, supervised by Professor Todd Emrick in the Department of Polymer Science and Engineering. Since July 2013, Emily has been at Case Western Reserve University, USA as an Assistant Professor of Chemistry. Her research addresses application-based materials problems in the areas of energy harvesting, management, and storage. She uses synthetic chemistry to tailor molecular design and control self-assembly for the preparation and study of novel conductive materials with controlled domain sizes and interfaces.

To find out more about Emily’s research take a look at her group’s website.

As a Polymer Chemistry Associate Editor, Emily will be handling submissions to the journal. Why not submit your next paper to her Editorial Office?

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry’s Impact Factor increases to 5.520

Polymer Chemistry is delighted to announce its Impact Factor has increased to 5.520.

Polymer Chemistry Impact factor

Polymer Chemistry is dedicated to publishing research on all aspects of synthetic and biological macromolecules, and related emerging areas. The impressive Impact Factor of 5.520 and great Immediacy Index of 1.81 is a strong assurance that research published in Polymer Chemistry will have excellent visibility and relevance to the polymer chemistry community.

Publishing your research in Polymer Chemistry means that your article will be read and cited quickly by your colleagues. Did you know:

  • Polymer Chemistry‘s outstanding Immediacy Index has been consistently higher than its competitors since its launch. (Data based on Immediacy Indexes from 2011, 2012, 2013 and 2014)
  • Articles published in Polymer Chemistry receive on average 10 citations.
  • Since 2011 we have grown our content by over 290% AND our Impact Factor has continued to increase.
  • Articles published in Polymer Chemistry are less likely to receive zero citations compared to other journals in the field. In fact, 30% of articles published in Polymer Chemistry in 2014 received a minimum of 5 citations, which is higher than other journals in the field.

(Data downloaded from ISI Web of Science on 17 June 2015)


Our fast times to publication ensure that your research is reviewed and announced to the community rapidly.

From receipt, your research papers will be published in 56 daysCommunications articles will be published in a rapid 40 days(Data taken from 2015 average manuscript handling times)

Our unique combination of high quality articles, outstanding Editorial and Advisory Board, free colour and flexible manuscript format make it clear to see why Polymer Chemistry is one of the leading journals within the polymer science field. Why not take a look at our top 10 most downloaded articles from Q1 of 2015 and read the fantastic articles we publish.

So join the many leading scientists that have already chosen to publish in Polymer Chemistry and submit your research today to be seen with the best!

Submit your research
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Dr. Andreas Walther

Dr. Andreas Walther graduated from Bayreuth University in Germany in 2008 with a PhD focusing on the self-assembly behaviour and applications of Janus particles and other soft, complex colloids. After a postdoctoral stay with a focus on biomimetic hybrid materials at Aalto University (Helsinki, Finland), he returned to Germany and established his independent research group at the DWI – Leibniz Institute for Interactive Materials in Aachen. His research interests concentrate on developing and understanding hierarchical self-assembly concepts inside and outside equilibrium, and on utilising and connecting such processes to soft materials research – often following bioinspired design principles. Andreas has published more than 90 papers and has recently been awarded the Bayer Early Excellence in Science Award (for Materials) and the Reimund Stadler Young Investigator Award of the German Chemical Society.

What was your inspiration in becoming a chemist?

I believe one of the big chemical companies is responsible for attracting me to chemistry by sending a “polymer science kit”, containing foams, resins and a toolkit to prepare Nylon fibres, to my senior class when I was still back in secondary school. Even nowadays, I still think that the classical experiment of pulling a polyamide fibre from the interface of oil/water monomer mixtures is one of the most intriguing and instructive experiments in a polymer class.

What was the motivation to write your Polymer Chemistry article?

Our main interest lies in developing self-assembly concepts to create new soft materials, for which we heavily rely on very well defined building blocks with tailored functionalities and interactions. Modern polymer chemistry provides us with the tools to make desirable building blocks with relative ease of synthesis. In this case we were interested in a straightforward way to modify the surfaces of colloidal particles to provide us with very specific biorecognition units, while at the same time rejecting all non-specific protein adhesion. Interestingly enough, despite all the common knowledge about the protein-repellent properties of polyethylene glycol (PEG) coatings, we could only find a very small amount of systematic studies discussing how for instance the architecture and composition of adsorbed PEG-based block copolymers influence protein repellency. So we went through a systematic study and optimised the building blocks to provide us with the required features for our future work. The underlying structure/property relationships at this point will be interesting for other researchers working on surface modification, biorecognition and protein-fouling.

Why did you choose Polymer Chemistry to publish your work?

Polymer Chemistry strives for high-level and interdisciplinary scientific contributions covering all modern aspects of polymer chemistry. We felt it to be the right place to achieve highest reach and recognition in the field.

In which upcoming conferences may our readers meet you?

European Polymer Federation Meeting, 21-26 June 2015, at Dresden, Germany.

How do you spend your spare time?

Keeping the work/life balance is probably one of the hardest challenges when working in science. I very much enjoy cooking to take my mind off stressful events, and I enjoy travelling to see new places and meet interesting people.

Which profession would you choose if you were not a scientist?

Indeed a very good question, I would probably follow another creative passion. Best-case scenario would then be running a restaurant in a picturesque place.


Combining the incompatible: Block copolymers consecutively displaying activated esters and amines and their use as protein-repellent surface modifiers with multivalent biorecognition

Daniel Hoenders,   Thomas Tigges and   Andreas Walther


We present the facile synthesis and orthogonal functionalization of diblock copolymers containing two mutually incompatible segments, i.e. primary amines and activated esters, that are displayed chronologically and synthesized by consecutive radical addition fragmentation transfer polymerization (RAFT) of suitably modified monomers. Post-polymerization modification of the active ester moieties with functionalized triethylene glycol derivatives (TEG-NH2/BiotinTEG-NH2) furnishes a protein-repellent block with specific biorecognition, and the activation of the amine groups via deprotection results in newly reactive primary amines. We subsequently use these amines as an anchoring layer for the coating of aldehyde-functionalized polystyrene (PS) colloids and demonstrate tight adhesion and enhanced protein-repellent characteristics combined with specific and multivalent biorecognition of avidin as a function of block ratios. Our strategy demonstrates a viable approach for orthogonal combination of widely needed, but mutually incompatible, functional groups into complex polymer architectures.



Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an associate professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia), deputy director of the Australian Centre for NanoMedicine and member of Centre for Advanced Macromolecular Design.


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)