Paper of the week: White light emission of multi-chromophore photoluminescent nanoparticles

‘Fluorescence is a powerful tool in a variety of applications, ranging from optical to analytical materials (detection of small molecules and protein studies) because of its exquisite sensitivity, cost-effectiveness, facile operation, and superb spatial and temporal resolutions. Fluorescent organic nanoparticles derived from conjugated polymers have attracted significant interest due to their variable optical, electronic, and other properties such as facile preparation and functionalization. Among conjugated polymers used in organic nanoparticles, polyfluorene (PF) and its derivatives are considered to be of special interest because of their thermal/chemical stability, high fluorescence quantum yield and significant charge carrier mobility.’

Graphical abstract: White light emission of multi-chromophore photoluminescent nanoparticles using polyacrylate scaffold copolymers with pendent polyfluorene groups

In this work, Ling, Hogen-Esch and co-workers reported a styrene-type macromonomer containing polyfluorene pendent group (PFS), which allowed the convenient synthesis of well-defined copolymers of PFS with t-butyl acrylate by both RAFT and ATRP polymerization methods. After hydrolysis, the amphiphilic copolymers self-assembled into photoluminescent nanoparticles in aqueous solution. When doped with selected dyes, the nanoparticles emitted light with tunable colors as well as white via Förster energy transfer from the excited pendent polyfluorene groups.

White light emission of multi-chromophore photoluminescent nanoparticles using polyacrylate scaffold copolymers with pendent polyfluorene groups by Chao Deng, Peng Jiang, Xiaobin Shen, Jun Ling and Thieo E. Hogen-Esch, Polym. Chem. 2014, 5, 5109-5115.

Julien Nicolas is a web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)