Archive for the ‘Uncategorized’ Category

4th International Conference on Scanning Probe Microscopy on Soft and Polymer Materials

We are proud to reveal that ChemComm will be sponsoring the 4th International Conference on Scanning Probe Microscopy on Soft and Polymeric Materials (SPMonSPM). This symposium will be held on the 20 – 24 August in Leuven (Belgium) and will cover research on SPM applied to soft matter, polymeric materials and biological systems. The conference will include a short course, plenary lectures, a range of talks and dedicated poster sessions on topics across this field.

 

Scanning Probe Microscopy on Soft and Polymeric Materials

 

Registration is currently open and the early bird registration deadline is the 1st May!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Philip Power at 65: an icon of organometallic chemistry

Professor Philip P. Power (University of California, Davis) turned 65 in April 2018 and in honour of this anniversary and his immense influence on the field of organometallic chemistry we’re pleased to introduce a new cross-journal themed collection

Guest edited by Roland C. Fischer, Michael S. Hill, and David J. Liptrot the collection brings together 27 of Professor Power’s key RSC papers with specially commissioned work for Dalton Transactions and Chem. Commun. by over 45 by his coworkers and protégés.

Read the editorial, in which the guest editors give an overview of Professor Power’s career and highlight some of his contributions to the study of low coordinate systems, multiple bonding, small molecule activation, and London dispersion forces, or read on to check out some of the many hot articles inspired by his work.

 

1,3,2-Diazaborole-derived carbene complexes of boron

Dalton Trans., 2018,47, 41-44
10.1039/C7DT04079B

 

1,3,2-Diazaborole-derived carbene complexes of boron were synthesized via 1,2-hydrogen migration.

 

 

A snapshot of inorganic Janovsky complex analogues featuring a nucleophilic boron center

 

Chem. Commun., 2017,53, 12734-12737
10.1039/C7CC07616A

The addition of phenyl lithium (PhLi) to an aromatic 1,3,2,5-diazadiborinine (1) afforded isolable ionic species 2, which can be deemed as an inorganic analogue of a Janovsky complex.

 

Neutral two-dimensional organometallic–organic hybrid polymers based on pentaphosphaferrocene, bipyridyl linkers and CuCl

Dalton Trans., 2018,47, 1014-1017
10.1039/C7DT04286H
 

The reaction of the Pn ligand complex [Cp*Fe(η5-P5)] (1: Cp* = η5-C5Me5) with CuCl in the presence of 4,4′-bipyridine or 1,2-di(4-pyridyl)ethylene leads to the formation of three unprecedented neutral 2D organometallic–organic hybrid networks.

 

 

C–H and H–H activation at a di-titanium centre

 

Chem. Commun., 2017,53, 13117-13120
10.1039/C7CC07726B

An NHC promotes intramolecular C–H activation in bis(pentalene)dititanium; this process is reversed by the addition of hydrogen, forming a dihydride.

 

Divergent reactivity of nucleophilic 1-bora-7a-azaindenide anions

Dalton Trans., 2018,47, 734-741
10.1039/C7DT04350C
 

The reactions of 1-bora-7a-azaindenide anions, prepared in moderate to excellent yields by reduction of the appropriate 1-bora-7a-azaindenyl chlorides with KC8 in THF, with alkyl halides and carbon dioxide were studied.

 

 

Carbodiimides as catalysts for the reduction of a cadmium hydride complex

 

Chem. Commun., 2018,54, 460-462
10.1039/C7CC08393A

A rare terminal cadmium hydride complex has been synthesised. Reduction to the cadmium(I) dimer complex was achieved upon treatment with carbodiimides.

All articles in this collection will be free to access until the 19th of June. 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Synthesis of Maleimide Dyes with Colourful Fluorescent Emissions

A group of researchers based at universities spanning the UK, China and Spain have synthesised a diverse library of fluorescent maleimide dyes with the aim of developing a structure-function relationship, relating substituent effects to the optical properties of such molecules. This work is not only important to build upon fundamental understanding of the fluorescence mechanism, but to develop knowledge that may be used to guide the synthesis of organic fluorophores which demand particular optical properties.

Organic fluorescent molecules are used as tools in many areas such as forensics, genetic analysis, DNA sequencing and biotechnology. Maleimides are commonly used as fluorescent labels for proteins, as they can couple with the thiol groups of cysteine residues. They are suited to this purpose as they are stable, easily functionalised, give strong emissions and do not perturb the protein structure to a large extent.

Molecules fluoresce upon absorption of UV or visible light, elevating an electron from a ground state orbital to a higher-energy orbital and resulting in a singlet excited state. Relaxation to the ground state occurs rapidly (~ 10 ns) with concomitant emission of a photon – this is what we observe as ‘fluorescence’. The emitted photon almost always has a longer wavelength than the absorbed light, a phenomenon known as the ‘Stokes shift’.

 

Structures of selected aminohalomaleimides and alkoxyhalomaleimides

Structures of selected amino-halo-maleimides and alkoxy-halo-maleimides synthesised for the study

With three dihalomaleimide precursers in hand (Cl, Br and I) the researchers assembled a library of amino-halo-maleimides, amino-alkoxy-maleimides, and amino-thio-maleimides. They varied the R groups bound to the N, O and S heteroatoms to include aliphatic, phenyl and benzyl examples.

The optical properties of the amino-halo-maleimides in diethyl ether were examined and the emission wavelengths were measured to be 461-487 nm, giving green-blue fluorescence. The fluorescence quantum yields, a measure of the quantity of emitted photons compared to absorbed photons and an indication of emission brightness, decreased with the electronegativity of the halide (Cl: 37%, Br: 30%, I: 8%). Like many fluorescent molecules in solution the compounds exhibited solvafluorochromism: when the polarity of the solvent alters the optical properties. In protic solvents (methanol and water) the fluorescence quantum yields decreased to below 1% and the emission wavelengths increased by 73-109 nm. On the other hand, in non-polar solvents (cyclohexane) the fluorescence quantum yield increased, up to 56% for the chloro analogue.

a) The UV and emission spectra of fluorescent maleimides bearing amino (2a-c) and alkoxy (3a, 3b) substituents. b) The quantum yields of selected amino and alkoxymaleimides. c) The solvafluorochromism effect for three aminomaleimides (2a-c) in increasingly non-polar solvents.

a) The UV and emission spectra of fluorescent maleimides bearing amino (2a-c) and alkoxy (3a, 3b) substituents. b) The quantum yields of selected amino and alkoxymaleimides. c) The solvafluorochromism effect for three maleimides (2a-c) in various solvents.

Compared to their amino-substituted counterparts, alkoxy-halo-maleimides have lower quantum yields (reduction of 20-25%), indicating the increased electron-donating capacity of the amine substituent is important for fluorescence intensity. Furthermore, the slight decrease in the emission wavelengths of alkoxy-halo-maleimides (458-465 nm) gives them blue fluorescent emissions. Amino-thio-maleimides, with greater electron-donating capacity than both the amino and alkoxy analogues, have increased emission wavelengths (526-564 nm), thus yellow fluorescent emissions.

This study is a worthwhile read for anyone who uses fluorescent molecules in their work, those wishing to understand a little more about the practical principles of fluorescence and all those curious minds who like to form their own hypotheses.

To find out more please read:

Rational design of substituted maleimide dyes with tunable fluorescence and solvafluorochromism

Yujie Xie, Jonathan T. Husband, Miquel Torrent-Sucarrat, Huan Yang, Weisheng Liu, Rachel K. O’Reilly.
Chem. Commun., 2018, 54, 3339 – 3342
DOI: 10.1039/C8CC00772A

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for March

All of the referee-recommended articles below are free to access until 4th May 2018

An umpolung of Lewis acidity/basicity at nitrogen by deprotonation of a cyclic (amino)(aryl)nitrenium cation
Jiliang Zhou, Liu Leo Liu, Levy L. Cao and Douglas W. Stephan
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC01331D, Communication

___________________________________________

Aqueous immiscible layered double hydroxides: synthesis, characterisation and molecular dynamics simulation
Kanittika Ruengkajorn, Valentina Erastova, Jean-Charles Buffet, H. Chris Greenwell and Dermot O’Hare
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC00528A, Communication

___________________________________________

Ultrasmall Ru2P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media
Tingting Liu, Shuo Wang, Qiuju Zhang, Liang Chen, Weihua Hu and Chang Ming Li
Chem. Commun., 2018,54, 3343-3346
DOI: 10.1039/C8CC01166D, Communication

___________________________________________

Catalytically active nanorotor reversibly self-assembled by chemical signaling within an eight-component network
Abir Goswami, Susnata Pramanik and Michael Schmittel
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC01496E, Communication

___________________________________________

Impact of partial interpenetration in a hybrid ultramicroporous material on C2H2/C2H4 separation performance
Daniel O’Nolan, David G. Madden, Amrit Kumar, Kai-Jie Chen, Tony Pham, Katherine A. Forrest, Ewa Patyk-Kazmierczak, Qing-Yuan Yang, Claire A. Murray, Chiu C. Tang, Brian Space and Michael J. Zaworotko
Chem. Commun., 2018,54, 3488-3491
DOI: 10.1039/C8CC01627E, Communication

___________________________________________

On the nature of organic and inorganic centers that bifurcate electrons, coupling exergonic and endergonic oxidation-reduction reactions
John W. Peters, David N. Beratan, Gerrit J. Schut and Michael W. W. Adams
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC01530A, Feature Article

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

An Industrial Revolution on the Nanoscale

“What are the possibilities of small but movable machines? They may or may not be useful, but they surely would be fun to make”. In December 1959 Richard Feynman addressed the annual meeting of the American Physical Society at Caltech with a talk entitled ‘There’s Plenty of Room at the Bottom’, imploring the scientific community to start thinking small, like ‘entire 24 volumes of the Encyclopaedia Britannica on the head of a pin’ kind of small. Many quote this lecture as when the notion of nanomachines first entered the scientific sphere – with talk of miniature cars, injectable molecular ‘surgeons’ and machines that place atoms side by side to synthesize any molecule imaginable. The lecture reads like the description of the futuristic setting in ‘Back to the Future’, an exploration of possibilities at a time when we fundamentally lacked the tools to make them a reality.

As in ‘Back to the Future’, which predated yet predicted the emergence of mobile-banking technology, video calling and personal drones, Richard Feynman’s plea for scientists to prepare molecular-scale machines has also become a reality, and for their successes in this field Jean-Pierre Sauvage, Sir Fraser Stoddart and Ben Feringa were jointly awarded the Nobel Prize in Chemistry in 2016.

A group of researchers based in London and Singapore have written a feature article introducing both the foundational work in this field and state-of-the-art examples. Nanomachines are single molecules or molecular assemblies on the nanoscale (this review defines a 1 – 100 nm scope) that have the ability to perform ‘useful work’ upon application of an external energy source. To extract work (often in the form of controlled mechanical movement) molecular machines are designed to operate at a thermodynamically far-from-equilibrium state, maintained by an energy input, with movement occurring as the system relaxes towards equilibrium. At the synthetic level, molecules are designed with components which have restricted translational and rotational movements with respect to each other, and the ability to control these movements is key to obtaining the desired function.

A catalytically active rotaxane synthesised by Nolte and co-workers acts as a tiny epoxidising machine , moving along a polybutadiene polymer

The catalytically active rotaxane synthesised by Nolte and co-workers acts as a tiny epoxidising machine, moving along a polybutadiene polymer

One of the first advances towards the synthesis of nanomachines was by the research group of Jean-Pierre Sauvage, who achieved the templated synthesis of catenanes; structures with two circular molecules that are interlocked like two links in a chain. It was subsequently shown that a catenane motor could be prepared, with one ring rotating with respect to the other in a controlled manner. Fraser Stoddart further contributed to the field with ‘rotaxanes’, composite molecules comprising a ring threaded onto an axle. Nanomachines based on rotaxanes have been developed and include switches, shuttles and ‘molecular elevators’. A state-of-the-art example of a catalytically active rotaxane synthesised by Nolte and co-workers in 2003 demonstrates the potential of nanomachines to revolutionise organic synthesis. The rotaxane is constructed with a magnesium-bound porphyrin, which threads onto a polybutadiene polymer (300 kDa, 98% cis) and catalyses the epoxidation of the double bonds (turnover number: 140, cis/trans ratio of the polyepoxide: 1:4).

Ben Feringa's electric nano-car, a single molecule with four fluorene 'wheels' capable of driving across a copper surface

Ben Feringa’s electric nano-car, a single molecule with four fluorene ‘wheels’ capable of driving across a copper surface

In 2011 Ben Feringa and co-workers synthesized the worlds tiniest electric car using the same design principles they had used to create a spinning motor in 1999. The car is a single molecule with the ability to propel itself across a crystalline copper surface upon activation by a voltage pulse, with 10 pulses moving the car 6 nm across the surface. The car itself is comprised of a central diyne strut bonded at each end to carbazole ‘axles’. Each axle is bound through alkenes to two fluorene ‘wheels’. The key design elements are the alkenes and two chiral methyl substituents on each axle which forces each wheel to twist out of the plane. For one wheel rotation: an electronic excitation induces transcis isomerisation of the alkene causing a quarter turn of the wheel such that it sits adjacent to the methyl group. Next, a vibrational excitation induces helical inversion, allowing the wheel to push past the methyl group another quarter turn. Another isomerisation and helical inversion completes a full rotation. Research achievements like these demonstrate mechanical work on the nanoscale, with the vision of achieving movement on the macroscale via synchronised motion.

These examples represent a small subset of those discussed in the feature article review, which not only spans the current scope of molecular-scale machines, but reviews the design principles guiding their development and the possibilities nanomachines represent in the future of scientific research.

To find out more please read: 

Artificial molecular and nanostructures for advanced nanomachinery

Elizabeth Ellis, Suresh Moorthy, Weng-I Katherine Chio and Tung-Chun Lee.
Chem. Commun., 2018, Advance Article
DOI: 10.1039/c7cc09133h

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Chemical Communications in 2017

We would like to highlight the Outstanding Reviewers for Chemical Communications in 2017, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Professor Koji Hirano, Osaka University, ORCID: 0000-0001-9752-1985
Professor Marcel Hollenstein, Institut Pasteur, ORCID: 0000-0003-0263-9206
Professor Yu Sherry Jiang, Harvard Medical School
Professor Joohoon Kim, Kyung Hee University, ORCID: 0000-0003-1481-2440
Dr Matthew Lloyd, University of Bath, ORCID: 0000-0002-4821-4361
Professor Arpad Molnar, University of Szeged, ORCID: 0000-0001-9191-450X
Professor David Nelson, University of Strathclyde, ORCID: 0000-0002-9461-5182
Professor Kyungsoo Oh, Chung-Ang University, ORCID: 0000-0002-4566-6573
Professor Carlos del Pozo, University of Valencia, ORCID: 0000-0002-0947-5999
Professor Jin Xie, Nanjing University, ORCID: 0000-0003-2600-6139

We would also like to thank the Chemical Communications Board and the general chemical sciences community for their continued support of the journal, as authors, reviewers and readers.

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé.  You can find more details in our author and reviewer resource centre.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

22nd International Symposium on Fluorine Chemistry

We proud to announce that ChemComm will be sponsoring the 22nd International Symposium on Fluorine Chemistry (22nd ISFC), which will take place on the 22nd – 27th July 2018, in Oxford, UK. We will also publish a themed collection on Fluorine Chemistry, guest edited by Professor Veronique Gouverneur (Chair of the 22nd ISFC),  to further promote and develop research in this area.

Fluorine Chemistry Symposium

Both the conference and themed issue will have a broad scope, focusing on fundamental and applied fluorine chemistry, and they will appeal to fluorine chemists working in a range of scientific areas, such as synthesis, material sciences and chemical biology. Researchers wishing to contribute to the ChemComm collection should contact the Editorial Office.

The early bird registration deadline for the conference is the 21st May 2018.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for February

All of the referee-recommended articles below are free to access until 6th April 2018.

Challenges and advances in the computational modeling of biological phosphate hydrolysis
Dušan Petrović, Klaudia Szeler and Shina Caroline Lynn Kamerlin
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C7CC09504J, Feature Article

____________________________________________________

Copper-catalyzed three-component cyclization of amidines, styrenes, and fluoroalkyl halides for the synthesis of modular fluoroalkylated pyrimidines
Xue-Qiang Chu, Bu-Qing Cheng, Yao-Wei Zhang, Danhua Ge, Zhi-Liang Shen and Teck-Peng Loh
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C7CC09571F, Communication

____________________________________________________

Encoding matter with regiospecific 12C/13C isotopic labels
James J. La Clair
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC00080H, Communication

___________________________________________________

Unravelling Lawesson’s reagent: the structure of monomeric (4-methoxyphenyl)phosphine disulfide
Artur Mardyukov, Dominik Niedek and Peter R. Schreiner
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC00034D, Communication

___________________________________________________

Enhanced hydrogen spillover to fullerene at ambient temperature
Hirotomo Nishihara, Tomoya Simura and Takashi Kyotani
Chem. Commun., 2018, Advance Article
DOI: 10.1039/C8CC00265G, Communication

___________________________________________________

Spatially resolved coding of λ-orthogonal hydrogels by laser lithography
Rhiannon R. Batchelor, Eva Blasco, Kilian N. R. Wuest, Hongxu Lu, Martin Wegener, Christopher Barner-Kowollik and Martina H. Stenzel
Chem. Commun., 2018,54, 2436-2439
DOI: 10.1039/C7CC09619D, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

An Organometallic Toolbox for the Study and Synthesis of Unique N-Heterocyclic Carbenes

N-heterocyclic carbenes (NHCs) are an interesting example of chemical curiosity turned commonplace. NHCs are stable singlet carbenes located within an N-heterocycle, in which the carbon centre bears an sp2 hybridised pair of electrons. As early as 1835 chemists were thinking about carbenes, with Dumas’ optimistic (if unsuccessful) attempt to synthesise the methylene carbene by dehydrating methanol. For many years the intentional study of carbenes was considered too demanding because of their instability, and so they remained in relative obscurity. A number of seminal papers changed this preconception; in particular, a report by Wanzlick in 1968 reporting the synthesis of the first NHC-metal complex using mercury and the first synthesis of a stable and isolable NHC by Arduengo in 1991.

Intensification in research and interest in NHCs over the past thirty years may have originated with these seminal reports, but it continues because of the success of NHCs in catalysis: both as strongly σ-donating metal ligands and nucleophilic organocatalysts. One of the most valuable features of NHCs is the ability to tailor their steric and electronic properties by altering the heterocyclic ring and N-bound substituents. Accordingly, the study of NHC reactivity and the development of methods to functionalise NHCs are essential for continued innovation in this field.

Drs Marina Uzelac and Eva Hevia at the University of Strathclyde, Scotland, have written a review article summarising organometallic methods to metallate N-heterocyclic carbenes. The work summarises metallation of all three components of the NHC: the carbenic carbon, the heterocyclic backbone and the N-bound substituents.

The lithiated complex (1), synthesised by treatment of the N-heterocyclic carbene NHC with nBuLi, can be transmetallated at the C4 position by a number of main group elements to give a variety of bimetallic complexes (2). These complexes can be selectively quenched to generate NHC complexes with unconventional regiochemistry (3).

The lithiated complex (1) can be transmetallated at the C4 position by a number of main group elements to give a variety of bimetallic complexes (2). These complexes can be selectively quenched to generate NHC complexes with unconventional regiochemistry (3).

To exemplify the breadth of research discussed; beginning with 2,6-diisopropylphenyl (dipp) substituted imidazole-2-ylidenes, the reactivity of the NHC can be unlocked by initial addition of an alkali metal such as lithium, sodium or potassium (see figure). Metallation at the C4 position occurs by deprotonation of the vinyl protons in the NHC backbone, while a second metal coordinates to the carbene electron pair at the C2 position. From this species (1) it is possible to transmetallate the C4 position with a less-polar metal such as zinc, aluminium, gallium, boron or iron to furnish a bi-metallic NHC (2). Interestingly, addition of an electrophilic methyl or proton source to this species exclusively quenches the C2 position, generating a suite of unconventional complexes (3) with the carbene electron pair positioned on the C4 carbon.

Lithiation of NHC complexes: a) deprotonation of the backbone of NHC-borane complex; b) co-complexation of NHC-zinc complex with alkyllithium affording lithium zincate; c) deprotonation of the abnormal carbene complex.

Reactivity of main-group NHC complexes towards lithiation.

Further studies investigate how different reagents influence the regioselectively and extent of metallation, how metallated NHCs can activate small-molecules such as carbon dioxide, conditions which can lead to the metallation of N-dipp substitutents, as well as products and speciation following treatment of NHCs with a variety of bimetallic reagents.

In addition to expanding the knowledge of NHC reactivity, the work summarised in this review provides a reference and inspiration to researchers seeking to tailor NHCs for unique applications in synthesis and catalysis.

To find out more please read:

Polar organometallic strategies for regioselective C-H metallation of N-heterocyclic carbenes

Marina Uzelac and Eva Hevia.
Chem. Commun., 2018, Advance Article
DOI: 10.1039/c8cc00049b

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Gold Rocks the Casbah

Researchers at the University of Texas have developed an inventive method to deliver molecules into the cell’s nucleus. Advances in gene therapy and the development of drugs that target DNA, the transcription machinery and other regulatory systems all rely on effective transport of molecules into the nucleus. Furthermore, achieving selective delivery of drugs reduces toxicity to non-target organs while maintaining the therapeutic effect.

Towards this aim, the authors delivered liposomes coated with clusters of gold nanoparticles into the cytoplasm. Laser irradiation of the cells heats the nanoparticles to high temperatures resulting in vapourisation of the water-based cytosol, and the transient formation of nanobubbles. The effect of this is an increase in the porosity of the nuclear envelope, enabling the transfer of various macromolecules from the cytoplasm into the nucleus. The authors describe this technique as ‘nanomechanical transduction’ because it is hypothesised that the mechanical effects brought on by the rapid growth and collapse (20 – 50 ns lifetimes) of the bubbles is responsible for the observed increase in porosity.

Local heating of gold nanoparticles and the subsequent formation of nanobubbles occurs due to ‘plasmon resonance’, whereby an electromagnetic field interacts with gold on the surface of the liposome and drives free-electron oscillation in resonance with the incident laser.

A diagram showing nanomechanical transduction. A gold-coated nanoparticle liposome enters the cell and, upon activation by a laser pulse, creates nanobubbles which causes mechanical disruptions in the cell and increased permeability of the nuclear membrane so molecules such as plasmids can enter.

A diagram showing nanomechanical transduction. A gold-coated liposome enters the cell and, upon activation by a laser pulse, creates nanobubbles and mechanical disruption within the cell, resulting in increased permeability of the nuclear membrane.

As a proof-of-concept the authors investigated whether nanomechanical transduction can improve the nuclear localisation of two different types of macromolecule: a dextran polymer labelled with a fluorescent dye, and a plasmid encoding the green fluorescent protein. In the first experiment, cells containing the dextran polymer were incubated with plasmonic liposomes and subjected to a near-infrared laser pulse. Up to 70% fluorescence intensity was observed in the nucleus compared to the cytoplasm, far exceeding the result from control experiments using electroporation to increase cell membrane permeability. In a similar way, nanomechanical transduction resulted in a 2.7 fold increase in the expression of the green-fluorescent protein compared to using electroporation, demonstrating efficient delivery of the plasmid into the nucleus.

The authors entitle their paper ‘rock the nucleus’ and, unintentional reference or not, I think a Casbah (one meaning is the central keep, or citadel, of a walled city) is a rather fitting analogy for the nucleus: the command post of the cell, and safeguard of genetic information. The authors of this work offer a sophisticated yet general method for molecules to breach the walls.

To find out more please read:

Rock the nucleus: significantly enhanced nuclear membrane permeability and gene transfection by plasmonic nanobubble induced nanomechanical transduction

Xiuying Li, Peiyuan Kang, Zhuo Chen, Sneha Lal, Li Zhang, Jeremiah J. Gassensmith and Zhenpeng Qin.
Chem. Commun., 2008, Advance Article
DOI: 10.1039/c7cc09613e

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)