Archive for the ‘Subject Areas’ Category

New copper complex offers easy access to complex structures

Chemists working at the University of Cambridge in the UK have discovered a new dicopper complex capable of forming diverse supramolecular structures.

The creation of supramolecular structures for a wide variety of uses has been something that chemists have pursued for years and, as such, new methods to access these structures are constantly sought.  Jonathan Nitschke and colleagues are prominent figures in this field and have just reported a new copper complex that self assembles into larger architectures.

The team first assembled the copper complex and then showed they could modified it at two points. This is done either by substitution of solvent molecules with ligands capable of linking multiple complexes or by modifying the imine bonds. Using both these approaches and varying the ligands, it was possible to achieve the templated synthesis of 26- and 52-membered macrocycles. More complex assemblies that utilise this approach are currently being investigated.

Interested in finding out more? Then download Nitschke’s ChemComm article for free today. Also why not check out Dr Nitschke’s mini review and edge article form our sister journal Chemical Science?

Reactivity modulation in container molecules
Boris Breiner, Jack K. Clegg and Jonathan R. Nitschke
Chem. Sci., 2011, 2, 51-56
DOI: 10.1039/C0SC00329H, Minireview

Selective anion binding by a “Chameleon” capsule with a dynamically reconfigurable exterior
Yana R. Hristova, Maarten M. J. Smulders, Jack K. Clegg, Boris Breiner and Jonathan R. Nitschke
Chem. Sci., 2011, 2, 638-641
DOI: 10.1039/C0SC00495B, Edge Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for communications: Artificial Photosynthesis

We are delighted to announce a forthcoming web themed issue:

Artificial Photosynthesis

Guest editor: Andrew Benniston (Newcastle University)

Submission deadline: 15th August 2011 EXTENDED TO 30TH SEPTEMBER!!

We are now welcoming submissions for this web theme, which will be a celebration of current achievements and future perspectives in this exciting field of research. Communications covering all aspects of the following areas are encouraged:

  • new materials and photocatalysts for solar photochemistry
  • hydrogen production and water splitting
  • nitrogen and carbon dioxide functionalisation
  • light harvesting and energy transfer
  • electron transfer (tunnelling vs hopping)
  • coupled proton/electron transfer
  • long-range electron transport
  • multi-electron redox processes
  • bioinspired molecular systems
  • nanostructures for solar energy usage

All manuscripts will undergo strict peer review and should be very important and conceptually significant in accord with the ChemComm mandate.

Publication of the peer-reviewed articles will occur without delay to ensure the timely dissemination of the work. The articles will then be assembled on the ChemComm website as a web-based thematic issue, to permit readers to consult and download individual contributions from the entire series.

Communications for this web theme can be submitted anytime from now until 30th September using our web submission system. Please add the phrase ‘artifical photosynthesis’ in the comments to the editor field.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New nerve agent sensor to join fight against terror

Graphical abstract: Chemical functionalization of electrodes for detection of gaseous nerve agents with carbon nanotube field-effect transistorsA new sensor for detecting nerve agents has been developed by scientists in France.

Organophosphorus (OP) compounds, such as sarin, are extremely neurotoxic compounds that have been used both in the battlefield and in terrorist attacks, including the Tokyo subway attack in 1995.

Current technologies for detecting OPs are not very practical, say Jean-Pierre Simonato (CEA Grenoble) and colleagues, so they’ve developed a new sensor based on carbon nanotube field-effect transistors.

Find out more in Simonato’s recently published ChemComm communication, free to download until 2nd June.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Titanate cigarette filter

Cigarette in a handChinese researchers have shown for the first time that nanomaterials made from titanium dioxide (TiO2) can be used in cigarette filters to significantly reduce the amount of harmful chemicals inhaled by smokers. They say it offers a cheaper and safer alternative than using carbon-based nanomaterials and show potential for use in other filtering devices including gas masks and air purification systems. 

Current cigarette filters are made from cellulose acetate, which absorbs some of the toxic and carcinogenic compounds present in tobacco smoke, including tar, nicotine, polycyclic aromatic hydrocarbons and tobacco-specific nitrosamines. In recent years, scientists have attempted to improve standard filters by adding nanomaterials, including carbon nanotubes or mesoporous silica, to capture more of these chemicals. But these experimental methods remain expensive and could pose unknown health risks. 

Now, Mingdeng Wei’s lab at Fuzhou University in Fujian province, together with colleagues at the Fujian Tobacco Industrial Corporation, Xiamen, have found that titanate nanosheets and nanotubes can filter tobacco smoke. ‘A great range of harmful compounds including tar, nicotine, ammonia, hydrogen cyanide, selected carbonyls and phenolic compounds can be reduced efficiently,’ says Wei. 
Intrigued? Read the full news story in Chemistry World and download the ChemComm communication.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Emerging Investigator Lectureship – winner announced

On behalf of the ChemComm Editorial Board, I am delighted to announce that Dr Scott Dalgarno (Heriot Watt University, Edinburgh, UK) has won the inaugural ChemComm Emerging Investigator Lectureship.

This annual award recognises an emerging scientist in the early stages of their independent academic career. The Editorial Board commended Dr Dalgarno’s contributions to the field of supramolecular chemistry, in particular the assembly and properties of calixarenes.  

Dr Dalgarno will present his award lecture, entitled ‘Metal-Organic Calixarene Assemblies’, at the following locations:

For more details about these lectures, please contact ChemComm Editor, Robert Eagling.

To find out more about Dr Dalgarno’s research, read these recent ChemComm articles:
Calix[4]arene supported clusters: a dimer of [MnIIIMnII] dimers
Stephanie M. Taylor, Ruaraidh D. McIntosh, Christine M. Beavers, Simon J. Teat, Stergios Piligkos, Scott J. Dalgarno and Euan K. Brechin, Chem. Commun., 2011, 47, 1440-1442

Calixarene supported enneanuclear Cu(II) clusters
Georgios Karotsis, Stuart Kennedy, Scott J. Dalgarno and Euan K. Brechin, Chem. Commun., 2010, 46, 3884-3886

Magnetism in metal–organic capsules
Jerry L. Atwood, Euan K. Brechin, Scott J. Dalgarno, Ross Inglis, Leigh F. Jones, Andrew Mossine, Martin J. Paterson, Nicholas P. Power and Simon J. Teat, Chem. Commun., 2010, 46, 3484-3486

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Antonio Echavarren joins the ChemComm Editorial Board

Antonio EchavarrenOn behalf of the ChemComm Editorial Board, I am delighted to welcome Professor Antonio Echavarren as the new ChemComm Associate Editor for organic chemistry and catalysis.

Professor Echavarren is Group Leader at the Institute of Chemical Research of Catalonia (ICIQ) in Tarragona, Spain. His research focuses on developing new catalytic methods based on the organometallic chemistry of transition metals as well as synthesing natural products and polyarenes.

Professor Echavarren’s editorial office is now open for submissions, welcoming urgent communications highlighting the latest advances in organic chemistry and catalysis.

Find out more about Professor Echavarren’s research on gold catalysis by reading these exciting articles:

A multipurpose gold(I) precatalyst
Mihai Raducan, Carles Rodríguez-Escrich, Xacobe C. Cambeiro, Eduardo C. Escudero-Adán, Miquel A. Pericàs and Antonio M. Echavarren, Chem. Commun., 2011, 47, 4893-4895

Mechanism of the gold-catalyzed cyclopropanation of alkenes with 1,6-enynes
Patricia Pérez-Galán, Elena Herrero-Gómez, Daniel T. Hog, Nolwenn J. A. Martin, Feliu Maseras and Antonio M. Echavarren, Chem. Sci., 2011, 2, 141-149

Are you an organic chemist based in North America? Submit your research to Michael Krische, ChemComm North American Associate Editor for organic chemistry.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Antibody acts as rudder to steer DNA into a pore

Scientists from China and Canada have studied the effect of a DNA-binding antigen-binding fragment (Fab) of an antibody on the translocation of a DNA polymer. Both poly(dT)45:Fab HED10 and poly(dT)45 produce unique double step current traces, which were analysed in detail to get information about the translocation events.

Representation of an α-HL pore and the mechanism for the poly(dT)45 specific binding with Fab HED10. A biological α-HL nanopore is embedded in a lipid bilayer. The narrowest section of α-HL is 1.4 nm. The potential across the bilayer membrane is applied through Ag/AgCl electrodes. In 10 mM Tris-HCl (pH = 7.8) buffer, the antibody recognizes four consecutive thymine residues of poly(dT)45.

The results have important implications for understanding the translocation behaviour of polymers, which could help to develop nanopore biosensors with high sensitivity and specificity, says Yitao Long, from East China University of Science and Technology. In particular, the addition of polymer-binding antibodies may facilitate the use of nanopores in sequencing technologies.

The presence of the FAB HED10 decreases the time of the first level of the step but not the second. The Fab appears to behave as a rudder, which significantly decreases the energy barrier for poly(dT)45 translocation. A more rigid or extended conformation of poly(dT)45 would decrease the time required to find the entrance to the narrow constriction in the pore. The entropic barrier required to linearise the DNA strand may be the dominant contribution to the entire energy barrier.

Find out more by downloading the communication, recently published in ChemComm.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A new and simple polymer synthesis for polymer solar cells

A team of Swedish chemists have presented a novel and straightforward method for synthesising polymers for use in polymer solar cells (PSC) with a wide absorption spectrum.

The researchers, led by Mats R. Andersson from the Chalmers University of Technology in Sweden, synthesised the polymer from a widely available stannyl thiophene and an easily synthesised bromoisoindigo monomer. These were then coupled together using a Stille coupling reaction. Overall this represents just 3 steps and was achieved with a high overall yield of 68%.

 

The polymer itself is a low band-gap polymer with a donor–acceptor structure, which is important for harvesting photons from sunlight. The team found that the polymer exhibited promising performance when used in a PSC device and expect to be able to further improve this by varying the indigo groups.

If you would like to read more about this topic then download the ChemComm article for free today. Also, why not check out these other great ChemComm articles on PCSs?

Synthesis of annulated thiophene perylene bisimide analogues: their applications to bulk heterojunction organic solar cells
Hyunbong Choi, Sanghyun Paek, Juman Song, Chulwoo Kim, Nara Cho and Jaejung Ko
Chem. Commun., 2011, DOI: 10.1039/C0CC05448H

Crystalline conjugated polymer containing fused 2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene and thieno[3,4-c]pyrrole-4,6-dione units for bulk heterojunction solar cells
Guan-Yu Chen, Yu-Hsin Cheng, Yi-Jen Chou, Ming-Shin Su, Chia-Min Chen and Kung-Hwa Wei
Chem. Commun., 2011, DOI: 10.1039/C1CC10585J

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A rare example of synthon polymorphism

Scientists in India have reported a rare example of synthon polymorphism in co-crystals of 4,4′-bipyridine and 4-hydroxybenzoic acid.

Graphical abstract: Synthon polymorphism and pseudopolymorphism in co-crystals. The 4,4′-bipyridine–4-hydroxybenzoic acid structural landscape

Polymorphism is defined as the ability of a material to exist in more than one form or crystal structure. It has important implications for the properties of such materials; for example in pharmaceuticals, the dissolution rate of a drug can be dependent on the polymorphic form. While this is a common phenomenon in single crystals it is much less common in co-crystals, systems where the structure has at least two distinct components.

Gautam Desiraju from the Indian Institute of Science, found that when 4,4′-bipyridine and 4-hydroxybenzoic acid were dissolved together in a solvent such as methanol they would co-crystallise to form two different polymorphs. They noticed that a third form, a pseudopolymorph, was also present.

If you would like to read more about Desiraju’s discovery then why not download his ChemComm article for free today? This article is also part the ChemComm web themed issue on Supramolecular Chemistry to mark the International Year of Chemistry 2011.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for communications: catalytic C–C bond formation via late transition metals

Michael KrischeChemComm Associate Editor Michael Krische is delighted to announce a forthcoming web themed issue:

New advances in catalytic C–C bond formation via late transition metals

Guest editor: Michael Krische (University of Texas at Austin)

Submission deadline: 30th September 2011

We are now welcoming submissions for this web theme, which will be a celebration of current achievements and future perspectives in this exciting field of research.

All manuscripts will undergo strict peer review and should be very important and conceptually significant in accord with the ChemComm mandate.

Publication of the peer-reviewed articles will occur without delay to ensure the timely dissemination of the work. The articles will then be assembled on the ChemComm website as a web-based thematic issue, to permit readers to consult and download individual contributions from the entire series.

Communications for this web theme can be submitted anytime from now until 30th September using our web submission system. Please add the phrase ‘catalytic C–C bond formation’ in the comments to the editor field.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)