Archive for the ‘Materials’ Category

Rotaxane Pulley – To Me, To You

Mechanically interlocked molecules have received ever increasing focus over the last number of years due to their potential to mimic the function of macroscopic devices in the molecular world.

Examples include molecular elevators and molecular muscles and with this Communication Zheng Meng and Chuan-Feng Chen of the CAS Key Laboratory of Molecular Recognition and Function at the Chinese Academy of Sciences in Beijing have added pulley-like shuttling motion to the toolkit.

Molecular pulley system powered by acid and base

Molecular pulley system powered by acid and base

Using their previously reported* triptycene-derived crown ether host and combining it with a linear guest with three dibenzylammonium and three N-methyltriazolium sites, they have made a molecular pulley system that mimics the plain rotary motion and linear translocation of full sized pulleys. The movement is powered by acid or base leading to one end of the cable-like guest moving towards the host while the other moves away (picture).

The researchers have not only added to the toolbox of molecular motion components but also provided new insights towards further developing molecular machines.

If you want to make your own molecular pulley read the article today! 

To read the details, check out the ChemComm article in full – it’s free to access until 10th May:
A molecular pulley based on a triply interlocked [2]rotaxane
Zheng Meng and Chuan-Feng Chen
Chem. Commun., 2015, 51, Advance Article
DOI: 10.1039/C5CC01301A


*(a) C. F. Chen, Chem. Commun., 2011, 47, 1674–1688 RSC; (b) Y. Han, Z. Meng, Y. X. Ma and C. F. Chen, Acc. Chem. Res., 2014, 47, 2026–2040

**Access is free through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Opening the door to poly(ionic liquid)s with enhanced properties

Poly(ionic liquid)s, or PILs, are polyelectrolytes whose potential uses are being investigated for a variety of technologies, such as batteries, membranes, solar cells and switchable surfaces. In this ChemComm communication, Professor Eric Drockenmuller and co-workers at the Université de Lyon, University of Liège and the Institut Universitaire de France describe a new family of PILs based on poly(vinyl ester 1,2,3-triazolium)s, which should give rise to new properties and application possibilities. 

The materials are prepared from a multistep route making use of `click chemistry´(copper(I) catalysed azide alkyne Huisgen cycloaddition reaction), palladium catalyzed vinyl group exchange, and cobalt mediated radical polymerisation. This route yields a neutral polymer, which is transformed into the poly(ionic liquid) using N-methyl bis[(trifluoromethyl)sulfonyl]imide. This useful reagent alkylates the triazole group present, and delivers the bis[(trifluoromethyl)sulfonyl]imide counterion in one step. 

Synthetic route used to yield new poly(vinyl-ester 1,2,3-triazolium)s

The ionic conductivity for the PIL reported is slightly lower than for other types of PIL. To tune this property, a variety of alkynes and azides are being tested in the ring forming step of the reaction, which will result in different substituents on the triazolium ring and on the spacer group between the polymer backbone and triazolium ring.  Changes in thermal properties in the the neutral precursor-to-PIL stage of the reaction were measured using broadband dielectric spectroscopy. Significant changes in solubility, and a 9⁰C rise in glass transition temperature to -16⁰C, were observed. 

The molecular variety introduced by this new synthetic approach offers large scope for fine tuning the electronic and mechanical material properties of these polyelectrolytes, further enabling their use in important technological applications. 

Read this Chemical Communication today – it’s free to access until 3rd April*: 

Poly(vinyl ester 1,2,3-triazolium)s: a new member of the poly(ionic liquid)s family
M. M. Obadia, G. Colliat-Dangus, A. Debuigne, A. Serghei, C. Detrembleurb and E. Drockenmuller
DOI: 10.1039/c4cc08847f 

*Access is free through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biochemical Logic Systems – closed-loop “Sense/Act” operations

When research in a particular area reaches saturation point, the question of future applications becomes critically important. This recent Feature Article in ChemComm considers molecular logic gates, which have not yet achieved pure computational applications (with their hoped for advantages) due to limitations caused by noise build-up and cross-talk between various biomolecular elements. Thus they are unable to compete with electronic computing devices. The authors ask the question: what potential applications are there that justify the continued research in this field?

Evgeny Katz from the Department of Chemistry and Biomolecular Science at Clarkson University with Sergiy Minko from the Nanostructured Materials Lab at the University of Georgia lead the reader through a short overview of potential answers. These include “smart” switchable membranes, electrodes, biofuel cells and drug-releasing systems.
 
The use of biochemical data processing to produce a yes/no answer provides the opportunity for direct coupling with signal-responsive materials to produce a closed-loop “sense/act” operation. This ability has the potential to transform the field of biosensors and bioactuators.

(A) A biocatalytic cascade activated by enzyme–substrate inputs and resulting in the in situ produced pH changes. (B) The logic circuitry equivalent to the biocatalytic cascade. (C) pH-switchable electrode interface modified with a polymeric brush.

The authors could be considered brave to ask the question of such a popular focus of research, but this article provides an opportunity for reflection and thought about what biochemical computing research can uniquely achieve. Having read this article I was left with a sense of excitement at the specific in vivo sensing possibilities that biochemical computing provides. To find out if you think the opportunities are exciting too, read the article today!

To read the details, check out the ChemComm article in full:
Enzyme-based logic systems interfaced with signal-responsive materials and electrodes
Evgeny Katz and Sergiy Minko
Chem. Commun., 2015, 51, Advance Article
DOI: 10.1039/C4CC09851J

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Capturing C60 in a Crystalline Copolymer Chain

Since its structural realisation in 1985, C60 has garnered much attention in the chemical world for not only its spherical shape, but also its stability, electronic properties and the ability to do chemistry on its surface.

One such avenue that has proven popular in recent times is the incorporation of C60 into one-, two- and three-dimensional arrays, either covalently or non-covalently, in attempts to control the distribution of the molecules in the solid- or solution-phase.  One problem that arises in the synthesis of these extended frameworks, however, is that there often a large amount of disorder and void space in the structure, so it can be difficult to ascertain with much degree of certainty how these C60 molecules are oriented. This uncertainty can consequentially result in the properties and behaviours of the new materials remaining unidentified.

Now, researchers from the University of California, DavisMarilyn Olmstead and Alan Balch – have shown that coordination chemistry can be used to not only generate polymers that covalently link molecules of functionalised C60 in such a manner that can they can be studied crystallographically, but also that these polymers can be used to capture free C60 and C70.

Initially, polymers of C60 were synthesised through the mono-functionalisation of C60 with a piperazyl group, which, on account of its two tertiary amines, can coordinate in a linear fashion with transition metal ions, in this case rhodium(II) acetate. Upon the combination of these two components, a linear one-dimensional polymer was formed, in which it could be seen crystallographically that the C60 moieties were positioned on alternating sides of the polymer chain. These polymer chains were further found to extend into two dimensions through the interdigitation of neighbouring chains in a zipper-like fashion. C60-Rh(II) polymers can capture free C60

Perhaps more interestingly is that when these polymer chains were synthesised in the presence of either C60 or C70, free molecules of C60 or C70 were seen to occupy the void spaces between the C60 molecules of the polymer. Additionally, if a mixture of C60 and C70 was present in the polymer synthesis, it was observed that only C60 was captured by the polymer, most likely as a result of a better geometric match between the polymer and the spherical C60 in preference to the more elongated shape of C70.

This work elegantly demonstrates the generation of not only a self-assembling C60-containing polymer that can be characterised structurally in the solid state, but of one  that can entrap free molecules of C60 selectively over molecules of C70. Based on the properties of free C60 and transition metal complexes, the electronic and chromophoric properties of such a crystalline system could also be expected to offer some noteworthy results.

Read this HOT ChemComm article in full!

Zipping up fullerenes into polymers using rhodium(II) acetate dimer and N(CH2CH2)2NC60 as building blocks
Amineh Aghabali, Marilyn M. Olmstead and Alan L. Balch
Chem. Commun., 2014, Advance Article.
DOI: 10.1039/C4CC06995A

Biography

Anthea Blackburn is a guest web writer for Chemical Communications. Anthea is a graduate student hailing from New Zealand, studying at Northwestern University in the US under the tutelage of Prof. Fraser Stoddart (a Scot), where she is exploiting supramolecular chemistry to develop multidimensional systems and study the emergent properties that arise in these superstructures. When time and money allow, she is ambitiously attempting to visit all 50 US states before graduation.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Bubble power: Driving self-propelled machines with acetylene bubbles

Self-propelled micro/nanomachines were once the thing of science-fiction, but as so often is the case, fiction has become reality in recent years. Such devices could in the future find uses in environmental remediation and biomedical applications. Researchers around the world have been making progress on designing these machines, and it is a novel fuel-free autonomous self-propelled motor which is the focus of this Chemical Communication by Martin Pumera and team from the School of Physical and Mathematical Sciences at Nanyang Technological University.

Rather than focus on oxygen bubble propulsion, which often requires the use of high levels of toxic hydrogen peroxide, they have developed an acetylene bubble based motor. To achieve this they utilised the reaction of water and calcium carbide, which produces acetylene and calcium hydroxide. This approach makes use of the water that will be found in the most common application environments, but does not require reactive metals such as magnesium and aluminium. The work expands the scope of bubble-propulsion beyond hydrogen and oxygen and gives designers of micro/nanomachines greater power unit choices in their designs.

Acetylene bubble powered motor in water.

The most important part of the research reported in this Communication is the optimisation of an encapsulation layer around the calcium carbide to control the reaction. However, to find out what this layer is made of and how to prepare it you will have to read the article today.

To read the details, check out the Chem Comm article in full:

Acetylene bubble-powered autonomous capsules: towards in situ fuel
James Guo Sheng Moo, Hong Wang and Martin Pumera
Chem. Commun., 2014, 50, Advance Article
DOI: 10.1039/C4CC07218A
   

    

    

    

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Just Mix – Zeolitic Imidazolate Framework Synthesis

Zeolitic-imidazolate frameworks (ZIFs) are a sub-class of metal-organic frameworks (MOFs) with a wide range of potential uses including: CO2 capture, storage, catalysis, sensing and biomedicine. Unfortunately their synthesis often requires additives or reaction activation, and if they can be made without these it often requires long reaction times or results in low yields, neither of which is ideal for a substance with such wide potential uses.

To overcome this bottleneck in ZIF synthesis, Roland Fischer and his team from the Inorganic Chemistry department in Ruhr Universitat Bochum in Germany have developed a rapid room temperature synthesis approach. I am a great believer in developing approaches that can be carried out at room temperature and pressure and this is one such elegant solution. The authors produce nanocrystals of ZIFs in a very narrow size distribution by careful selection of the precursors and the solvents they are dissolved in. The solutions are then mixed and stirred to create the ZIF crystals; it really is that elegant.

ZIF crystals showing very narrow size distribution

The authors then used these crystals to fabricate thin films on quartz crystal microbalances and used this device to detect volatile organic solvents. This demonstration leads the way into exploring other uses of these ZIFs – after all, they can now be easily made. But to find out which solvent and precursors you need to use, you’ll have to read the paper today!

To read the details, check out the ChemComm article in full:
Rapid room temperature synthesis of zeolitic-imidazolate framework (ZIF) nanocrystals
Min Tu, Christian Wiktor, Christoph Rosler and Roland Fischer
Chem. Commun., 2014, 50, 13258-13260
DOI: 10.1039/C4CC06491G  

    

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Optimising multi-enzyme reactions – enabling enzymatic encoding

The ability to mimic cascade and linked enzyme reactions has potential applications for disease diagnosis and pharmaceutical manufacturing, to name just two. However, the optimisation of the ratios of the interacting enzymes can be a time consuming step when carried out using standard solution based enzyme assays. With the problem becoming exponentially more difficult with the number of enzymes in the system, Jun Ge and Zheng Liu of the Department of Chemical Engineering at Tsinghua University, with colleagues, have looked to overcome this hurdle by developing a simple, fast and high throughput method based on ink-jet printing. 

The team replaced the colour inks in a standard inkjet printer with enzyme and substrate solutions. The ratio of these solutions could be controlled by varying the overall colour that was printed. Optimisation of cascade and coupled enzymatic reactions could be carried out rapidly and inexpensively compared to the standard solution based method. 

Enzymatic encryption, decoding and deletion of information

Precise two-dimensional control of enzyme placement via ink-jet printing also raises the possibility of creating 2D codes with enzymatic encryption built in, as the figure demonstrates. I don’t want to give the secret of this encryption technique away so you’ll have to read the paper today. 

To read the details, check out the ChemComm article in full: 

Ink-jet printing an optimal multi-enzyme system
Yifei Zhang, Fengjiao Lyu, Jun Ge, Zheng Liu
Chem. Commun., 2014, Accepted Article
DOI: 10.1039/C4CC06158F 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Metal-organic frameworks (MOFs): ChemComm web-themed issue

We would like to celebrate with our authors and the community our web themed collection entitled “Metal-organic frameworks” recently published in ChemComm.

The issue was Guest Edited by Neil Champness (University of Nottingham, UK), Christian Serre (University of Versailles, France) and Seth Cohen (University of California, San Diego, USA), and contains an impressive collection of articles, including:

Feature Articles:

MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity
Zhijuan Zhang, Yonggang Zhao, Qihan Gong, Zhong Li and Jing Li
Chem. Commun., 2013, 49, 653-661, DOI: 10.1039/C2CC35561B

Commercial metal–organic frameworks as heterogeneous catalysts
Amarajothi Dhakshinamoorthy, Mercedes Alvaro and Hermenegildo Garcia
Chem. Commun., 2012, 48, 11275-11288, DOI: 10.1039/C2CC34329K

Communications:

Understanding excess uptake maxima for hydrogen adsorption isotherms in frameworks with rht topology
David Fairen-Jimenez, Yamil J. Colón, Omar K. Farha, Youn-Sang Bae, Joseph T. Hupp and Randall Q. Snurr
Chem. Commun., 2012, 48, 10496-10498, DOI: 10.1039/C2CC35711A

Targeted functionalisation of a hierarchically-structured porous coordination polymer crystal enhances its entire function
Kenji Hirai, Shuhei Furukawa, Mio Kondo, Mikhail Meilikhov, Yoko Sakata, Osami Sakata and Susumu Kitagawa
Chem. Commun., 2012, 48, 6472-6474, DOI: 10.1039/C2CC31421E

Take a look at the excellent work published in this themed collection: http://rsc.li/cc-mofs

We encourage you to share the link to this collection with your colleagues.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Mind the gap – Enhancing intercalation of luminescent aggregates

Particular molecules, which are not luminescent in solution, can luminesce intensely upon molecular aggregation; this is known as aggregation-induced emission (AIE). AIE luminogens are used widely as efficient electroluminescent materials, sensitive chemosensors, and as bioprobes. The main cause of the AIE effect is the restriction of intramolecular rotation. Therefore it can be promoted by introducing the molecules into inorganic materials with a rigid skeleton such as α-zirconium phosphate layers.

Jihong Yu and colleagues from Jilin University in China have published a method describing the intercalation of a quaternary tetraphenylethene (TPEN) cation, an AIE chromophore, into α-zirconium phosphate. At first glance, this does not seem to be too difficult a task– after all, the TPEN has two permanent positive charges on either end suitable to interact with the negatively charged phosphate layers. But, in this case, size does matter. The chromophore is almost three times larger than the distance between phosphate layers, more than a tight fit!

Stretching the layers of α-zirconium phosphate by preintercalation of butylamine before introduction of the chromophore

To overcome this problem, Yu and colleagues carried out a preintercalation step with butylamine before performing a cation exchange step to place the TPEN chromophore within the phosphate layers. Ultimately, they stretched the layer before putting the final molecule inside, just like you would stretch a pair of shoes in an effort to make them fit before placing your sensitive feet inside.

The intercalated product was found to be highly emissive in the blue region of the electromagnetic spectrum and was readily internalized by cells. The system also showed good biocompatibility, suggesting that it would make an excellent base for fluorescent labels in future biomedical imaging applications.

To read the details, check out the HOT Chem Comm article in full:

AIE cation functionalized layered zirconium phosphate nanoplatelets: ion-exchange intercalation and cell imaging

Dongdong Li, Chuanlong Miao, Xiaodan Wang, Xianghui Yu, Jihong Yu and Ruren Xu
Chem. Commun., 2013, 49, Accepted Manuscript
DOI: 10.1039/C3CC45041D

Iain Larmour is a guest web writer for ChemComm.  He has researched a wide variety of topics during his years in the lab including nanostructured surfaces for water repellency and developing nanoparticle systems for bioanalysis by surface enhanced optical spectroscopies.  He currently works in science management with a focus on responses to climate change.  In his spare time he enjoys reading, photography and art.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A new, functionally tolerant route to organo-aluminium reagents

Paul Knochel and colleagues at the Ludwig Maximilians University in Munich have reported a new general synthesis of aryl and heteroaryl aluminium reagents.  The route described allows a larger range of functional groups to be incorporated, compared with the more usual approach of inserting Al into aryl halide bonds directly.  The synthetic methodology uses di-isobutyl aluminium chloride and n-BuLi at -78C in an exchange reaction with a functionalised aryl or heteroaryl halide.

General scheme for preparation and derivitisation of aryl aluminium reagents

The synthesis of a group of derivatives is described, via the reaction of the aluminium reagents with a variety of electrophiles.  Typical cross coupling reactions using palladium catalysis, as well as copper-catalysed Michael additions, allylation and acylations are reported, involving a rich variety of incorporated functional groups. Importantly, further derivitisation of the organo-aluminium reagents includes no further transmetalation steps.

Of note are the reactivities of electron-rich furan and thiophene bromides functionalised with ester groups, which also could remain intact during the reaction with di-isobutylaluminium chloride and butyl-lithium at -78C, yielding the desired reagents that were further derivatised, as in other examples.

N-heterocycles such as 3-bromo-quinoline also received attention, yielding the aluminium reagent in 73% yield, and smoothly converting in a palladium catalysed cross coupling reaction with 4-iodobenzonitrile.  Full NMR data for the products of the reactions described is given in the supplementary information.

In general, this Communication describes a considerable step forward in the field of organo-aluminium reagents for organic synthesis, and no doubt will be of interest to synthetic chemists in many fields.

Read this HOT ChemComm article today!

Generation of Functionalised Aryl and Heteroaryl Aluminium Reagents by Halogen/Lithium Exchange
Thomas Klatt, Klaus Groll and Paul Knochel
Chem. Commun., 2013,49, 6953-6955
DOI: 10.1039/C3CC43356K, Communication

Kevin Murnaghan is a guest web-writer for Chemical Communications. He is currently a Research Chemist in the Adhesive Technologies Business Sector of Henkel AG & Co. KGaA, based in Düsseldorf, Germany. His research interests focus primarily on enabling chemistries and technologies for next generation adhesives and surface treatments. Any views expressed here are his personal ones and not those of Henkel AG & Co. KGaA.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)