Archive for the ‘Hot Articles’ Category

High yielding catenane synthesis? Surely not!

Rapid thermally assisted donor–acceptor catenation

The X-ray crystal structures of two azide-functionalised catenanes

Entropy is not a friend of the macrocyclic chemist because creating large cyclic molecules by tying together several building blocks creates a high thermodynamic hurdle to cross. Nature has been forming these types of molecules for many millions of years and has provided inspiration for chemists to overcome these synthetic challenges. Perhaps purely for the academic interest, work began on investigating if it was possible to interlock two of these cyclic molecules together and form what is known as a catenane. Imagine a pot of spaghetti cooking and think of the strands tumbling around in the boiling water. Now imagine trying to tie all the ends together at the same time. Most will form individual rings but statistically a small number of those rings will be linked together. Conceptually this sounds easy but the reality is not so straight forward. A secondary problem is that only very small amounts of the linked rings are formed which means most of the starting material is wasted.

As interest in these curious molecules grew their potential application as switches for molecular electronics and sensors became apparent. However, if these applications were ever to be realised the cost of their formation would need to be feasible on a commercial scale. Macrocyclic chemists dream of yields over 50%, yet most chemists would be embarrassed to report a yield like this! However, we must remember that these reactions are inherently unfavourable so to achieve respectable yields we need to ‘stack the deck in our favour’ and try to make the interlocking of the rings more favourable.

Deceptively simple but incredibly effective ways of using what are commonly thought of as weak interactions have been used to hold the two fragments together, making the subsequent formation of the interlocked rings (rather than two separate rings) much more likely.  In a recent report in Chemical Communications, Fraser Stoddart and co-workers at Northwestern University, Texas A&M University and the King Abdullah City for Science and Technology report a significant development in catenane synthesis whereby yields of almost 90% are possible. As almost quantitative conversions are now being reported the commercial application of these molecules, which has for so long been discussed, moves another step closer.

Rapid thermally assisted donor–acceptor catenation
Albert C. Fahrenbach, Karel J. Hartlieb, Chi-Hau Sue, Carson J. Bruns, Gokhan Barin, Subhadeep Basu, Mark A. Olson, Youssry Y. Botros, Abdulaziz Bagabas, Nezar H. Khdary and J. Fraser Stoddart
Chem. Commun., 2012,48, 9141-9143
DOI: 10.1039/C2CC34427K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Making light work of hydrogel formation

UK scientists have developed a new way to make hydrogels using light. The hydrogels could be used in a range of applications from cell culture to biosensors.

Graphical abstract: Dipeptide hydrogelation triggered via ultraviolet lightDave Adams, at the University of Liverpool, and colleagues made the hydrogels from dipeptide conjugates using UV light to trigger the gelation. Unlike previous light-activated gelations, the team used a photoacid generator (a molecule that is photolysed by light to produce an acid) to lower the pH of the gelator solution below the apparent pKa of the gelators, resulting in gelation.

The team showed that they could pattern the hydrogel using a photomask. The patterned channels of gels could be used in microfluidics, biosensors and synthetic biomaterials, the team suggest.

Read more about this research in Adams’ ChemComm communication, free to access for a limited period.

Also of interest:
Chem Soc Rev critical review: Supramolecular gels formed from multi-component low molecular weight species

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Macrocycle insulation for molecular wires

Researchers in Texas are using rotaxane formation to sterically protect or “insulate” molecular wires.

Molecular wires, in which an unsaturated linker separates two or more redox active metal sites, are of great research interest. These structures allow phenomena such as electron delocalisation or transport between the two redox sites. John Gladysz’s group at Texas A&M University have an ongoing interest in dimetallic polyynediyl complexes, in which two metal centres are linked by conjugated polyynediyl linkers that they now hope to “insulate” to reduce interactions between wires and the external environment. A previous approach used long alkyl bis-phosphine, which wrapped around the wire in a double helix to complex both metal centres. However, this gave two enantiomers, which interconverted rapidly in solution via uncoiling of the protective ligands.

The Gladysz group are now reporting a straightforward solution to this problem. They found that by synthesising their bis-platinum wire in the presence of a 33-membered macrocycle, they could incorporate the wire as the thread of a rotaxane complex. This provides a more robust protection for the wire which is unaffected by dynamic processes.

This work shows a fantastic application of rotaxane chemistry for protection of a molecular wire. What’s more, the synthesis of this rotaxane is adaptable, and the Gladysz group are working on exciting new and improved systems including longer polyynediyl linkers and redox inactive macrocycles to improve the properties of the insulated wires.

The full communication can be downloaded here.

Cally Haynes

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A new catalyst for asymmetric aziridination

Aziridines are used extensively as intermediates for organic synthesis. The strained three-membered heterocycles reveal amino groups on ring-opening and therefore provide access to a variety of useful products. Enantioselective methods for forming aziridine rings are highly desirable because enantiopure amino-compounds represent important targets for both natural product synthesis and in the discovery of novel therapeutics.

Researchers from Kyushu University in Japan have reported a newly designed Ru(CO)salen complex (4), which acts as an efficient catalyst for asymmetric aziridination of alkenes.

Reaction of olefinic substrates (1) with 2-(trimethylsilyl)ethanesulfonyl (SES) protected azide (2) in the presence of the Ru(CO)salen complex 4 afforded enantioenriched aziridine products. 4 efficiently decomposes azides under ambient conditions and also catalyses asymmetric aziridination.

Judicious selection of an appropriate azide protecting-group also influenced the design of the catalyst. The researchers chose to include an appropriately located C–F  bond within the ligand in order to improve tolerance of 4 to reacting electrophiles.

Low catalyst loadings enabled the highly enantioselective azirdination of a variety of substrates possessing conjugated or non-conjugated terminal or cyclic olefins.

Find out more – download the communication for free for a limited period.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The Viewpoint: Help us with 100 years of ChemComm history!

This year ChemComm became the first chemistry journal to move to 100 issues per year. To celebrate this achievement, the journal is launching a new article type – the Viewpoint – with the aim of publishing 100 of these very high profile articles over the coming months.

Each of the 100 Viewpoint articles will aim to reflect upon the impact and influence of some of the most renowned papers that ChemComm (or its predecessor journals) have published over the last 100 years but we need help from the community in determining which articles have been the most influential.

Although Chemical Communications was officially launched in 1996, the roots of the journal go much further back through its predecessors – all the way to 1862 with the Journal of the Chemical Society. In the last 100 years, we’ve published close to 100000 articles, with well over 1000 of these articles coming from Nobel laureates alone!

Trying to determine which articles have been the most influential is going to be a massive challenge which will require the help of the entire chemical community – after all, the community is the best judge of what has been truly influential.

We think we’ve managed to come up with some examples of papers that we feel have been significant enough to deserve a Viewpoint:

  1. Hideki Shirakawa, Edwin J. Louis, Chwan K Chiang, Alan J Heeger and Alan G MacDiarmid’s 1977 communication reporting the first electrically conductive polymers.
  2. Neil Bartlett’s publication in 1962 reporting the world’s first noble gas compound, xenon hexafluoroplatinate.
  3. Mathias Brust, Merryl Walker, Donald Bethell, David J. Schiffrin and Robin Whyman’s 1994 communication on the functionalisation of gold nanoparticles with a thiol coating on the surface – ChemComm’s most cited paper of all time!
  4. Geoffrey Wilkinson’s 1965 paper reporting a rhodium catalyst for the hydroformylation of alkenes.

 

Our hope is that the Viewpoint articles will really engage our readers from across the chemical sciences and will shed a personal light on some truly influential chemistry that we have published over the last 10 decades! 

We would love it if you could e-mail us or tweet us (@ChemCommun) your suggestions of which articles (or even small group of seminal articles on one subject) from 1912 onwards, have been key to the development or history of chemistry.

We look forward to hearing from you soon.

History of Chemical Communications 1862 – Present

Journal of the Chemical Society (1862 – 1877)

Journal of the Chemical Society, Transactions (1878 – 1925)

Journal of the Chemical Society (resumed) (1926 – 1965)

Chemical Communications (London) (1965-1968)

Journal of the Chemical Society D: Chemical Communications (1969 – 1971)

Journal of the Chemical Society, Chemical Communications (1972-1995)

Chemical Communications (1996 – Present).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Chiral Control for the Future?

Tragedies such as the thalidomide scandal led to a re-think as to how pharmaceutical drugs are tested and examined before their sale to the public. Prior to this, racemic mixtures were often administered yet sometimes only one enantiomer of the compound gave the therapeutic properties while the other caused serious side effects. For this reason, huge interest developed in controlling reactions so that only enantiomer would be formed – not a trivial task for the many millions of molecules tumbling around in a round bottom flask! Such is the significance of this problem that the 2001 Nobel Prize for Chemistry was awarded to Sharpless, Noyori and Knowles for work in this field.

Figure 1: Preparation of chiral-at-copper complexes

Many of the methods to obtain this selectivity focus on controlling the orientation of the molecule by building a bulky pocket around the reaction site. Doing so means a reaction can only occur on one side and, as a result, only one enantiomer is created. While this technique has been shown to work well, an alternative approach is to create a reaction site which itself can control the orientation of the molecule. It is exactly this that Paul Newman, Kingsley Cavell and Benson Kariuki at Cardiff University have achieved.

The idea behind the concept is that the reaction site itself is a more efficient way of transferring the control of the chirality. To do this they have created a ‘chiral-at-metal’ Cu(I) complex (Figure 1) which is itself very rare due to the instability of these types of compounds. The characterisation of such an exciting complex is certainly worthy of rapid communication but I hope to see further papers on this work in the near future, giving us an insight into how well this complex performs as a catalyst and how effective it is at transferring chirality. Over time, the catalyst will surely undergo many subtle alterations to improve its performance but only time will tell if this is truly going to be the most effective method of controlling chirality.

Keen to read more? Download this ChemComm article here

Posted on behalf of Ruaraidh McIntosh, Chemical Communications web writer.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

First synthesis of potential sleeping sickness drug lead

Researchers from the University of Oxford have completed the first synthesis of (±)-hydroxyanthecotulide, an antiparasitic molecule that displays a number of other interesting biological activities.

David Hodgson’s group used their previously developed Cr(II)-catalysed allylation reaction to construct the molecule’s carbon skeleton. Alcohol 1 was constructed in a single step and then oxidised to aldehyde 2, which was used crude in an allylation reaction with 3 to give the anti-product (5) in good yields and high levels of diastereoselectivity.

 

The desired enone functionality was revealed by a Meyer-Schuster rearrangement of 5, which proceeded in excellent yield with in situ desilylation occurring under the reaction conditions.

1H and 13C NMR spectra of 6a were then compared with spectra of an authentic sample of (±)-hydroxyanthecotulide. Discrepancies in this spectral data encouraged the researchers to synthesise syn6b, by inversion of the C-4 secondary alcohol.

Gratifyingly, the spectra of syn-(±)-hydroxyanthecotulide (6b) was found to match data for the authentic sample and HPLC analysis provided further evidence to confirm that natural (±)-hydroxyanthecotulide, possesses syn-stereochemistry.

This research enabled the synthesis of both anti– and syn-(±)-hydroxyanthecotulide in 5 and 7 steps respectively, and may provide an attractive synthetic route for access to analogues of this biologically relevant family of molecules.

Download the full communication to find out more >

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Novel synthesis of iron catalyst complexes via C-H activation of imidazolium salts

Researchers from Lisbon have developed a mild and efficient catalytic system for reducing sulfoxides. They made the iron-N-heterocyclic carbene (NHC) catalysts (2) via C–H activation of an imidazolium pro-ligand (1) with commercially available Fe3(CO)12. This advance precludes the requirement for the strong bases traditionally employed in the synthesis of similar complexes. Additionally, iron is an economically attractive metal for use in catalysis owing to its abundance and is also non-toxic and therefore more environmentally friendly than other transition metals.

The combination of iron(ll) complex (2) with a silver salt and a silane reducing agent led to the conversion of a range of sulfoxides into the corresponding sulfides in good to excellent yields. Initial mechanistic probes suggest the existence of a free-radical based reaction pathway, although further studies are ongoing.

In this publication, Beatriz Royo’s group have demonstrated an interesting advance for the synthesis of iron-NHC complexes, which may find further utility in other catalytic processes.

Download the communication >

Posted on behalf of Alice Williamson, ChemComm web writer.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Magneto-chiral dichroism observed in light-harvesting antenna

Artificial light-harvesting antennas absorb light travelling parallel to a magnetic field differently from light travelling anti-parallel to the field, according to Japanese researchers. 

Magneto-chiral dichroism in artificial light-harvesting antenna

This effect – known as magneto-chiral dichroism (MChD) – is proposed to have played a role in the origin of homochirality in life and is important for the development of new magneto-optical devices.

This is only the second example of MChD reported in organic compounds. It indicates that MChD may occur during the light-harvesting process, says the team, which is important not only for learning more about photosynthesis but also for clarifying the origin of asymmetry in biological systems.

Read the communication:
Magneto-chiral dichroism of artificial light-harvesting antenna
Yuichi Kitagawa, Tomohiro Miyatake and Kazuyuki Ishii
Chem. Commun., 2012, DOI: 10.1039/C2CC30996C

Also of interest:
Nanoscale spectroscopy with optical antennas
Palash Bharadwaj, Ryan Beams and Lukas Novotny, Chem. Sci., 2011, 2, 136-140

Artificial Photosynthesis – a ChemComm web theme

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Ambient pressure XPS on the cheap

X-ray photoelectron spectroscopy (XPS) is capable of characterising the surface composition, oxidation state and electron state of materials. Unfortunately, it uses electrons and so common XPS machines must work at vacuum pressures. But how could you use XPS under ambient pressure?

One option would be to use public synchrotron facilities but access is through proposal review and available time is restricted so it is not feasible for day-to-day studies. Another option would be to follow the lead of Franklin Tao and build an inexpensive, ambient pressure XPS machine in-house.

Such a machine is ideal for catalytic studies. Previously scientists investigated catalysts with conventional vacuum XPS before and after experiments. Tao’s machine enables him to investigate catalyst surface changes during reaction conditions, something that required synchrotron facilities until now. The machine’s novel reaction cell allows XPS measurements to be carried out at up to 25-50 Torr using an inexpensive bench top X-ray source.

external view of the reaction cell
external view of the reaction cell

In addition to the ambient pressure XPS functionality, an on-line mass spectrometer allows correlation between catalytic performance and surface chemistry. Tao has demonstrated this novel machine by investigating the oxidation and reduction of ceria under real reaction conditions.

With day-to-day ambient pressure XPS now within reach of every research group, catalytic studies under reaction conditions have received a significant boost.

To find out more, download the ChemComm article today.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)