Archive for the ‘ChemComm1st’ Category

ChemComm Milestones – Ariel Furst

Congratulations to Ariel Furst on achieving her first ChemComm Milestone. We are excited to bring you our interview with Ariel discussing her #ChemComm1st article: ‘Covalent capture and electrochemical quantification of pathogenic E. coli

Read more below.

What are the main areas of research in your lab and what motivated you to take this direction?
The Furst lab combines biological and chemical engineering with electrochemistry to address challenges in human health and clean energy. We develop new technologies to detect pathogens, combat antimicrobial resistance, degrade environmental pollutants, and improve clean energy technologies. We are motivated by the most pressing global problems: lack of inexpensive, easy-to-use sensors and diagnostics for low-resource settings and dearth of accessible clean energy technologies. Watch our video for more info: https://ilp.mit.edu/watch/ariel-furst

Can you set this article in a wider context?
E. coli are dangerous pathogens, strains of which are responsible for both foodborne illnesses and urinary tract infections (UTIs). According to the USDA, each year, foodborne illnesses impact nearly 50 million Americans, leading to over 100,000 hospitalizations, with an economic cost of over 15 billion dollars. Worldwide, these illnesses cause over 400,000 deaths annually, with a disproportionate impact on children. Preventative measures are critical to prevent these infections and improve patient outcomes. Similarly, E. coli-based UTIs are some of the most common infections, and current diagnostics necessitate centralized facilities and multiple days for diagnosis. Thus, clinicians often prescribe broad-spectrum antibiotics without knowledge of the infectious agent, which leads to recurrent infections and emergent resistances: an exacerbation of both the individual and global problems. We have developed an inexpensive, disposable electrochemical sensor to selectively capture E. coli and accurately quantify them. This technology is a major step toward the implementation of point-of-care and point-of-contamination sensing of these deadly bacteria.

What do you hope your lab can achieve in the coming year?
The Furst Lab is continuing to develop technology to sense dangerous pathogens. We plan to continue to develop diagnostic technologies to detect not only the strain present but also antibiotic resistances in an integrated platform. We are additionally expanding our sensing targets to include the degradation and detection of small-molecule environmental contaminants. We hope to have prototypes of these platforms by the end of the year.

What is the best piece of advice you have ever been given?
Over the years many advisors and mentors have given me great advice, but at the end of the day it’s something that we all learn at a young age, the golden rule: treat others like you would like to be treated. This simple truth extends to all aspects of life and research and ensures that we have an inclusive environment that we can all thrive in.

Why did you choose to publish in ChemComm?
With interdisciplinary work, it is important to reach a wide audience. ChemComm reaches a broad audience and is a great place to share this work. Additionally, the format, a communication, is a great way to share new and exciting work quickly.

Dr. Ariel L. Furst is an Assistant Professor of Chemical Engineering at the Massachusetts Institute of Technology. She received a B.S. degree in Chemistry from the University of Chicago working with Prof. Stephen B. H. Kent to chemically synthesize proteins. She then completed her Ph.D. with Prof. Jacqueline K. Barton at the California Institute of Technology developing new electrochemical diagnostics based on DNA charge transport. She continued her training as an A. O. Beckman Postdoctoral Fellow in the Francis Group at the University of California, Berkeley. The Furst Lab combines electrochemical methods with biomolecular and materials engineering to address challenges in human health and environmental sustainability. Follow Ariel on Twitter: @afurst1, @FurstLab

Read Ariel’s #ChemComm1st article and others in ChemComm Milestones – First Independent Articles. Follow the hashtags on our Twitter.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Wooseok Ki

Our ChemComm Milestones campaign celebrates new, urgent research from emerging scientists. We recently spoke to Wooseok Ki about this #ChemComm1st article ‘Blue-shifted aggregation-induced enhancement of a Sn(iv) fluoride complex: the role of fluorine in luminescence enhancement‘.

 

Find out about Wooseok’s experiences as a first-time author in our interview below.

What are the main areas of research in your lab and what motivated you to take this direction?
Our primary research goal is to develop and understand the properties of earth-abundant metal based light emitting phosphors using simple solution chemistry. We have developed new tin(IV) halide complex phosphors. Interestingly, our bis(8-hydroquinone)tin(IV) fluoride complex significantly enhances quantum efficiency compared to that of the known, analogous, tin(IV) chloride complex. Furthermore, our tin(IV) flouride complex exhibits interesting aggregation-induced enhancement emission (stronger fluorescence emission in the solid-state than liquid) while the tin(IV) chloride complex does not. Most metal complexes suffer aggregation-induced quenching, weaker emission in the solid-state than liquid, which is a critical issue in OLEDs because OLEDs are fabricated with solid-state film. Therefore, the observed phenomena led to in-depth studies on understanding the role of fluoride ion in the system.

Can you set this article in a wider context?
Most highly efficient metal complexes are composed of expensive rare-earth or noble elements such as Ir, Pt, Re, and Au, which range from 1~90% regarding photoluminescence quantum yield. Despite their excellent performance, one of the drawbacks of using these elements is their high cost elements due to being imported from China. For example, iridium (Ir) costs $41.58 per gram, as reported in 2018, and has been steadily increasing over the years. On the contrary, tin metal is about $0.02/gram. For this reason, abundant, inexpensive transition metal-based complexes have been extensively researched. In our lab, new tin(IV) complexes have been synthesized and characterized by focusing on the effect of halides (i.e., F, Cl, Br, and I) bound to the metal center. In general, the popular way of tuning the optical and electrical properties of metal complexes is to substitute different functional groups in organic molecules(ligands). In our study, we have focused on changing halides bonded with a tin(IV) center with the same organic ligand. Indeed, the choice of halides significantly affects optical, chemical, electrochemical, and structural properties. We are able to tune photoluminescence emission properties systematically. We observed that stronger σ bonding between tin(IV) and fluorine induces significantly improves quantum yield as well as creates aggregation-induced enhancement emission. Our findings would provide to be an important research direction in the way of improving the efficiency of OLEDs.

What do you hope your lab can achieve in the coming year?
In general, the optical emission of metal complexes in the solid-state shows a red-shift with respect to the solution. However, the tin(IV) fluoride complex exhibits blue-shifted aggregation-induced enhancement emission. Therefore, I plan to implement computational studies (Density functional theory) to determine the fundamental mechanism of the fluorinated tin(IV) complex compared with chlorinated tin(IV) complex.

Describe your journey to becoming an independent researcher.
As a materials engineering major, I didn’t explore fundamental chemistry much. My PhD journey allowed me to build up on the fundamental chemistry of inorganic organic hybrid semiconductor materials to understand structure-related properties. After my PhD, I was postdoc at Purdue University and University of Washington, developing earth-abundant thin film solar cells via molecular precursors. Such experiences prepared me as an independent researcher. Furthermore, my industrial experience in Silicon Valley broadened my knowledge and analytical skills, helping to developing my research interests.

What is the best piece of advice you have ever been given?
Failure does not exist in research. Mistakes are stepping stones for new opportunities.

Why did you choose to publish in ChemComm?
ChemComm is a renowned, high-impact journal with fast and excellent support for researchers. The fair review process was the main reason I chose publish in ChemComm.

I am currently an Assistant Professor of Chemistry at Stockton University. I obtained my Ph.D. degree in materials chemistry at the Rutgers University-New Brunswick under the supervision of Dr. Jing Li. After that, I joined Dr. Hugh Hillhouse’s research group at the University of Washington as a postdoctoral associate to develop earth abundant thin film solar cells, such as Cu2ZnSnS4 (CZTS)and PbS. I had industrial experience as a Silicon Valley research scientist developing CZTS thin film solar cells for commercialization. My current research focuses on the synthesis and characterization of new earth-abundant metal complexes.

 

If you’re interested in reading more outstanding research from first-time authors, head over to our collection ChemComm Milestones – First Independent Articles. You can also find #ChemComm1st related content on our Twitter page: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Anna Kaczmarek

ChemComm Milestones celebrates emerging authors in the chemical sciences. This week, we spoke to Anna Kaczmarek who recently published her #ChemComm1st article on Ho3+–Yb3+ doped NaGdF4 nanothermometers emitting in BW-I and BW-II. Insight into the particle growth intermediate steps.

Find out more about Anna and her research below.

What are the main areas of research in your lab and what motivated you to take this direction?
My lab, the NanoSensing group, was founded in the beginning of 2020 and studies nano-sized optical sensors, specializing in nanothermometers. We have a special interest in interdisciplinary research, where the nanothermometers based on inorganic and hybrid nanomaterials can be combined with other fields such as biomedicine or reaction monitoring. We also focus part of our work on hybrid materials, such as lanthanide-grafted Covalent Organic Frameworks or lanthanide-grafted Periodic Mesoporous Organosilica, which is quite unique in the thermometry field. I have recently obtained an ERC Starting Grant on the topic of thermometry for theranostic applications, so that is currently our main theme in the research group. I have become fascinated with the topic of luminescence thermometry still during my post-doc and I am very happy I have received the chance to build a research lab at Ghent University to explore this fascinating topic.

Can you set this article in a wider context?
There are two interesting findings we have reported in this article – a new thermometry system based on Ho3+, Yb3+ doped 𝛽-NaGdF4 nanoparticles as well as the influence of reaction time on the 𝛽-NaGdF4 particle morphology and unique intermediate morphologies, which are formed during the transformation from 10-15 nm 𝛽-NaGdF4 spheres to 200 nm hexagonal-shaped particles.

To place the topic of the developed new thermometry system in a wider context it is important to explain that for diagnostic purposes temperature measurements in biomedicine are very important because temperature plays an essential role in biological systems. For biomedical applications accurate measurements in the so-called physiological range are crucial. It is true that detecting the temperature can be done employing more robust, and already commercially available techniques (e.g. thermocouples or infrared imaging), however optical temperature measurements at the nanoscale make it possible to revolutionize the studied resolution and reveal and research phenomena that are otherwise inaccessible to traditional thermometers. In the work we report the excellent thermal sensing capability of Ho3+, Yb3+ doped 𝛽-NaGdF4 nanoparticles, where the system is excited into the 5F55I8 transition of Ho3+ (640 nm) and the ratio of the 2F5/22F7/2 transition peak of Yb3+ and the 5I65I8 transition peak of Ho3+ were employed for thermometry applications. This system has previously not been explored for thermometry, however offers an excellent thermometer operating in the 1st and 2nd biological window of the human tissue. This type of system can show a high relative sensitivity in the physiological temperature regime upon measurements in water medium, without the need of shielding the Ho3+, Yb3+ doped 𝛽-NaGdF4 nanoparticle with any kind of protective silica layer despite its near infrared emission. Therefore, this is a very interesting finding for the luminescence thermometry community, where obtaining highly sensitive near infrared thermometers still remains a big challenge.

What do you hope your lab can achieve in the coming year?
I hope we can find answers and solutions to some current problems in the world of luminescence thermometry. Especially in the biomedical field there are, without doubt, still many challenges ahead of us. Also aiming for multidisciplinary materials is far from a trivial task, so we hope we will be successful in our current undertakings! Luis Carlos, an expert in lanthanide thermometry from Aveiro University, has pointed out at a congress that we need to do efforts to find real applications in the coming 10 years for the thermometers we are developing, otherwise there will be no future for this field. I take these words very seriously and will try my best to make important contributions in the field. On another level, I hope to see my research group grow and I hope I can attract new and enthusiastic researchers to come work with us. Every new person brings in a fresh perspective and a set of ideas how to solve scientific questions. I also hope to see my current students grow as researchers, and I hope that they will find joy in all the discoveries they will make during their PhDs.

Describe your journey to becoming an independent researcher.
I have always known I wanted an academic career. This might have to do with the fact that my father is an academic professor. All the biographies he brought home to me about Marie Sklodowska-Curie, whom soon became someone I idolized, definitely had a huge impact. After obtaining a Master’s degree at Adam Mickiewicz University in Poland, I decided to pursue my PhD abroad at Ghent University in Belgium in the lab of Rik Van Deun. Back then, little did I know that this was the university I would, several years later, obtain a professor title. Although I obtained a tenure track position quite young the journey was not always smooth. Funding was not always easy to acquire and there were moments in my career when I was uncertain of what the future might bring. However, I was fortunate to have people at Ghent University who believed in me and supported me when yet another funding agency rejected my post doc applications. I am very grateful for that. I also have had the opportunity to carry out several very enriching stays abroad in the labs of Francisco Romero-Salguero (Cordoba University) and Andries Meijerink (Utrecht University). They have had a huge impact on my career development and finding my own path as an independent researcher. Many colleagues in the luminescence thermometry community have also had an impact on my growth to become an independent researcher. I am very lucky to work in this supportive community. It was a bumpy road, but 2020 brought many changes. A terrible year due to the COVID-19 outbreak, but for me a very good year in many ways as I was fortunate to have been awarded the Marie Sklodowska-Curie post-doctoral fellowship, a tenure track position at Ghent University and the ERC Starting Grant, all just a few months apart. Now I have lots of work to do, and I hope to show more really exciting and relevant research in the coming years.

What is the best piece of advice you have ever been given?
I am sure there has been a huge amount of very useful advice I have received over the years working in academia and long before that. I know they have had an important impact on my development. But actually the one advice that stuck most in my head comes from a book: “When you want something with all of your heart, the universe conspires to helping you achieve it” – The Alchemist Paulo Coelho. These words kept me dreaming big and not giving up even when I was facing huge obstacles. I believed that if an academic career was what I wanted, and I worked hard enough for it, eventually it would work out. And indeed, it did. Now I am at the start of my new adventure as an independent researcher running my own lab.

Why did you choose to publish in ChemComm?
ChemComm is a renowned journal with a broad readership in chemistry. In general I am very fond of RSC journals as the review time is always fast and the process very clear and transparent.

Anna M. Kaczmarek is a materials chemist studying luminescent nanothermometers and their applications in various fields such as biomedicine, high temperature industry and catalytical applications. She develops nanomaterials mostly based on lanthanide ions, however other systems based on e.g. organic dyes or silver particles have also attracted her attention.
Anna M. Kaczmarek received her master degree in chemistry from the Adam Mickiewicz University in Poznan, Poland in 2010. In 2015 she defended her PhD in Chemstry at Ghent University, Belgium. She carried out post doctoral research in 3 different groups at Ghent University and also carried out several long stays abroad at Cordoba University (Spain) and Utrecht University (The Netherlands). During this time she developed her own research line of luminescence thermometry employing inorganic and hybrid organic/inorganic nanomaterials, MOFs, COFs, and PMOs. In 2020 she obtained a permanent position at the Department of Chemistry of Ghent University (Belgium) and started the NanoSensing group, which will study nano-sized optical sensors and specialize in nanothermometry. Several leading groups in Europe and the world are already studying this important topic, however, to the best of knowledge, the NanoSensing group is the only lab in Belgium studing the emerging topic of nanothermometry. She recently obtained a prestigious ERC Starting Grant on the topic of thermometry for theranostic applications. In her work she is especially intersted in interdisciplinary research where nanothermometers based on inorganic and hybrid nanomaterials can be combined with other fields e.g. biomedicine, chemical reaction monitoring, nanoelectronics.

 

 

Find more in ChemComm Milestones – First Independent Articles or on our Twitter, @ChemCommun.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Conrad Goodwin

We were delighted to speak to Conrad Goodwin about his #ChemComm1st article as a corresponding author: Low-spin 1,1′-diphosphametallocenates of chromium and iron. Find out more about Conrad and his research in our interview below.

What are the main areas of research in your lab and what motivated you to take this direction?
I’m currently a PostDoc Fellow working at Los Alamos National Laboratory. My main research is into redox, electronic structure, and covalency in transuranium elements, those after uranium. As such I’m always thinking of new ligands and metal-element bonds that might be interesting and help us learn more about how the actinides interact with the rest of the periodic table. These are really scarce resources though, not to mention the radiation hazard, so I’ve got to make use of opportunities to contribute elsewhere as well. I was inspired by some work from my time at Manchester working on anionic transition metal metallocenes, and decided to look into using these phospholide ligands to achieve the same thing and see how the phosphorous would change the bonding and structure. As an added benefit, these new anionic 1,1’-diphosphametallocenates can act as bidentate monoanionic ligands for the other side of my work into actinides.

Can you set this article in a wider context?
Metallocenes are everywhere: ferrocene even works as an anti-knocking agent in petrol for cars. The oxidation (taking an electron away) of metallocenes is also a defining feature, and one many chemists will be familiar with. Whether that’s simply because they’ve seen the [Fc]+/0 couple in electrochemisty, used [Co(Cp*)2] as a reducing agent, or perhaps they’ve seen a popular f-element version like [Sm(Cp*)2]. But going the other way, reduction (adding an electron), has been barely explored until recently with the report of [Mn(Cp*)2] anions and [M(Cpttt)2] (M = Mn, Fe, Co; Cpttt = {C5H2tBu3}). The former [Mn(Cp*)2] anion is really stable, it’s an 18e metallocene – but the latter Cpttt examples were all very temperature sensitive.
What we tried to do here was use a slightly different ligand set to try and hit a middle-ground between these stability extremes, and address two problems we saw with the previous examples: 1) the steric bulk of Cp* and Cpttt help stabilize those complexes but also make the metal quite inaccessible to do any further chemistry; 2) by adding a Lewis-basic phosphorous into the ligand we have added a binding site which means we have an anionic complex where the charge is spread across two rings, and a metal of our choosing in the middle. I think this has the potential to be a very interesting new ligand set, complementary to the ubiquitous ferrocenophane class, but where the anionic charge formally resides at the metal.

What do you hope your lab can achieve in the coming year?
The coming year (2021) is actually my last at Los Alamos, and hopefully my last as a PostDoc. I’m hoping to make the move to run my own research group by the end of 2021. As for my current work, we have several transuranium projects that are wrapping up, and whose publication I hope will excite the broader chemical community about these elements. We’ve got some work comparing lanthanide and actinide covalency, a topic that’s really relevant now as the debate surrounding green energy and nuclear fuels continues, and another exploring organometallic chemistry right at the edge of the periodic table.

Describe your journey to becoming an independent researcher.
I’m currently in a halfway house towards independence. After my PhD I was lucky enough to receive an EPSRC Doctoral Prize which was a 1-year PostDoc Fellowship to do a short research project based on my own proposal, but within an established lab. I finished this and then moved to Los Alamos as a J. Robert Oppenheimer Distinguished Postdoctoral Fellow which again was to do work that I proposed to do but I’m still supervised by a mentor (Andrew Gaunt). So this afforded me the flexibility to pursue a little piece of independent research on the phosphametallocenes here. As for my next steps to independence, my work at Los Alamos working with transuranium elements has afforded me a skillset and expertise with an area of the periodic table not many get to work in. So I’m trying to leverage this towards an independent career and research group working in this area.

What is the best piece of advice you have ever been given?
“Have you tried crystallizing that from toluene?” – David P. Mills, in regards to every molecular compound ever. But jokes aside, I’ve been fortunate enough to meet and learn from some of the giants in the molecular f-element research field, and they have all said some variation of: “Approach research with an open mind and question established dogma”. This is so important, and applies to every level of doing basic research. It can be as simple as: whatever way you were taught to do something doesn’t have to be the only way – so learn from others; to not assuming that certain elements behave a certain way and going out of your way to dispel that assumption. I know of at least one academic who tries to recruit PhD students from outside of their own research field so that they come to their lab with a blank slate and won’t be tempted to assume something will/won’t work.

Why did you choose to publish in ChemComm?
I’m a big fan of the RSC’s activities and also the publishing model. ChemComm has a really broad readership and I wanted this work to be seen and help ignite this new area of research into anionic metallocenes. On top of that the editorial team were incredibly helpful and responsive, which made the whole process really easy.

Conrad Goodwin undertook both graduate and doctoral studies at the University of Manchester, completing a PhD in f-element silylamide chemistry with Dr David Mills in 2017. He then undertook a one-year EPSRC Doctoral Prize fellowship focussed on low-coordinate and low oxidation-state amido and organometallic lanthanide complexes as precursors to record-breaking single molecule magnets. In 2018 he subsequently moved to the United States to undertake a J. Robert Oppenheimer Distinguished Postdoctoral Fellowship at Los Alamos National Laboratory with Dr Andrew Gaunt. His research interests focus on the interrelation of oxidation state and covalency in transuranium elements, and on organometallic transuranium chemistry. Find Conrad on Twitter: @ConradGoodwin

Read Conrad’s #ChemComm1st article and others in ChemComm Milestones – First Independent Articles. Follow the hashtag #ChemCommMilestones on our Twitter page for more: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Artur Kasprzak

It is the start of 2021 and we want to talk about more emerging scientists in our community. Beginning with Artur Kasprzak who recently published his #ChemComm1st article: ‘Disaggregation of a sumanene-containing fluorescent probe towards highly sensitive and specific detection of caesium cations‘.

 

Read our interview with Artur below.

What are the main areas of research in your lab and what motivated you to take this direction?
My lab is working in various areas of chemistry, including ferrocene systems, magnetic nanomaterials, biologically active dendrimers, sumanene-tethered systems, pi-conjugated molecules, and many more. We are a young group of organic and materials chemists. The compounds and materials that we create might offer many interesting properties and applications, such as catalysis or analyte recognition. All these points make us passionate about our fields of enterprise.

Can you set this article in a wider context?
In this ChemComm article we merged several topics in chemistry, namely (i) modification of sumanene, a fullerene fragment exhibiting many interesting properties, (ii) aggregation-induced emission enhancement effect (AIEE), which is a unique property that has not been commonly reported for sumanene-derived compounds, (iii) caesium cation (Cs+) induced disaggregation feature. The last point of our work is especially interesting, since site-selective Cs+ recognition is indeed the novel feature of sumanene derivatives that has been explored by my group and the group of prof. H. Sakurai (Osaka University). Additionally, it has an important wider application, since Cs+ detection is of a highest environmental because significant amounts of caesium has been detected in many radiated, post-disaster areas (like after the nuclear plant accident Fukushima-Daiichi in 2011). With our compound we can detect such low Cs+concentrations like 1.5·10-7 M !

What do you hope your lab can achieve in the coming year?
Hopefully, many great things! Now, we are intensively investigating ferrocene and sumanene chemistry and we anticipate that these chemistries can provide such wonderful results as these recently published in ChemComm. My research group has recently been preparing new organized structures bearing ferrocene or sumanene motifs, so we would like to study these exciting chemistries even more and publish these results in such respected journals as ChemComm. We are always seeking for potential collaborators so we would like to expand our areas of enterprises in the coming year.

Describe your journey to becoming an independent researcher.
From the very beginning of my scientific career, I was fortunate enough to collaborate with many great scientists that have been very kind and inspirational. Now, I appreciate it even more than before. I think that expanding the research horizons and scientific interests was the thing that enabled me to become an independent scientist that can collaborate with many researchers in various interesting fields. In my opinion everything is about enjoying the chemistry and seeing beyond your areas of enterprise. In my case, continually expanding the knowledge in various fields and keeping in touch with many experts really stimulated my independent researcher career. Now, I do my very best to guide my students through the same scientific career path that once I undertook.

What is the best piece of advice you have ever been given?
Work hard and be creative. To me it sounds like the best way to become a great scientist!

Why did you choose to publish in ChemComm?
In my opinion, ChemComm is the world’s leading chemical journal that publishes cutting-edge articles in general chemistry. Thus, when we considered the most suitable journal to publish these interesting results, ChemComm was our first choice! Additionally, I have also had many good experiences in publishing with RSC, because of its professionalism at every publication step as well as fast publications times.

Artur Kasprzak received his B.S. (2015), M.S. (2016) and PhD (2020) in Chemistry from Faculty of Chemistry, Warsaw University of Technology (Poland) under the supervision of Prof. Mariola Koszytkowska-Stawinska and Dr. Magdalena Poplawska. He has also spent half a year in the group of Prof. Hidehiro Sakurai at Osaka University working on the applications of sumanene-containing molecules towards the design of Cs+ recognition materials. His PhD thesis was focused on the synthesis and applications of functional materials based on the carbon-encapsulated iron nanoparticles. Now, working as an assistant professor at Warsaw University of Technology and leading a young research group (Functional Organic Compounds Group, a subgroup of Biofunctional Materials Group) he explores the chemistry and applications of π-conjugated molecules, metallocene-tethered systems and nanomaterials.
ORCID: 0000-0002-4895-1038
Researchgate: https://www.researchgate.net/profile/Artur_Kasprzak
www: http://zcho.ch.pw.edu.pl/skl_kas.html

Read Artur’s work and more #ChemComm1st articles in ChemComm Milestones – First Independent Articles. Follow us on Twitter @ChemCommun.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Hennie Valkenier

Our ChemComm Milestones campaign aims to highlight authors who have published their first independent research article in our journal. We were excited to speak to Hennie Valkenier about her experiences as an emerging author and her #ChemComm1st article: Transmembrane transport of copper(i) by imidazole-functionalised calix[4]arenes.

Read our interview with Hennie here:

What are the main areas of research in your lab and what motivated you to take this direction?
Our main area of research is the development of synthetic transporters for ions and we have a particular interest in the transport of phosphate and phosphorylated compounds, for which I received an ERC starting grant (ORGANITRA). I have always been fascinated by the possibility that chemistry offers to design compounds for any purpose and to then actually synthesise and test these compounds. This process of molecular design, synthesis, and testing allows, firstly, to deepen our understanding of how these compounds function, and secondly, to develop new materials or applications. During my PhD, I worked on organic compounds for applications in molecular electronics. After my PhD, the many health challenges that our society faces and my interest in biological processes prompted me to reorient my research towards supramolecular chemistry. This allowed me to follow my passion to design, synthesise, and study compounds, now with the purpose of transporting ions through lipid bilayers. This research has many fundamental aspects, but also offers perspectives on medical purposes (Chem. Sci. 2019).

Can you set this article in a wider context?
The research efforts on ion transport by synthetic compounds have increased rapidly over the past 20 years. The vast majority of this work focusses on only a limited number of ions (such as Na+, K+, and Cl), for which the methodology to study the transport process has been well established. The transport of these anions is indeed very important in biology, for instance in signal transduction and homeostasis. However, the transport of other ions, including phosphates and Cu+, also plays a crucial role in biology, while little or no research has been done to try and mimic these processes with synthetic systems. The challenge is that this requires not only the development of compounds that could bind and potentially transport these ions, but also the methodology to study the transport process. Nathan Renier is the first student who had the courage to start a PhD under my supervision and in this ChemComm article we show that it is indeed possible to transport Cu+ through lipid bilayers with synthetic compounds and to monitor this process by fluorescence spectroscopy. These results encouraged us to start exploring the biological effects of Cu+ transporters.

What do you hope your lab can achieve in the coming year?
First of all, I hope that the different team members can continue to grow as researchers and enjoy discoveries (whatever their scale) and hard work paying off. We also hope to find new synthetic transporters, deepen our understanding of transport processes, and transport challenging ions such as phosphates. And with Nathan and various collaborators we hope to demonstrate that we can transport Cu+ into cells.

Describe your journey to becoming an independent researcher.
I am firstly grateful to all my supervisors for their continuous support combined with the freedom to develop my research projects, to try new things, and pursue ideas even if only some of them turned out well. In Groningen, Kees Hummelen allowed me to reorient my research project and set up collaborations with specialists in the field, to work at the forefront of molecular electronics. In Bristol, Tony Davis has introduced me to the field of supramolecular chemistry and ion transport during the 3 years I worked with him as a postdoc. In his group, I also had the privilege to work with several PhD students, allowing me to gain experience in supervision. Through the “Supramolecular Chemistry in Water” COST network, I met with Kristin Bartik and Gilles Bruylants from Brussels (ULB), whose “Engineering of Molecular NanoSystems” laboratory I joined to look at anion binding and transport from a rather different perspective. They also taught me and supported me in the writing of grant proposals, starting with small grants for equipment, to later arrive at the grant for my permanent research position with the national research council FNRS and an ERC starting grant, which launched my career effectively.

What is the best piece of advice you have ever been given?
When thinking about grant proposals, my colleagues at the ULB told be to dream big. It feels safer to propose a project that is close to what is known to work, but aiming for something that we can currently only dream about is worth the risk. Another very good piece of advice, from Tony Davis, concerns publishing results: Tell a story. Research data is indispensable, but rationalising the trends observed and drawing conclusions that are more general and teach lessons that are also applicable to the research projects of other people is a lot more interesting.

Why did you choose to publish in ChemComm?
ChemComm reaches a very broad audience, which is a great platform for our interdisciplinary research. Furthermore, the clear and concise format of ChemComm is highly suitable for a proof-of-concept article. I also had good experiences with the RSC, in their fair and professional handling of manuscripts. Thus, we were delighted to see Nathan’s first article on Cu+ transport published in ChemComm.

Hennie Valkenier studied Chemistry at the University of Groningen and obtained her PhD from this university in 2011 with a thesis on Molecular Electronics, supervised by Prof. Kees Hummelen. After a year of teaching in West-Africa, she joined the group of Prof. Tony Davis at the University of Bristol as a post-doc to develop transmembrane transporters for chloride. In 2015, she moved to the Université libre de Bruxelles (ULB) to work as a post-doc with Profs. Kristin Bartik and Gilles Bruylants in the Engineering of Molecular NanoSystems laboratory, where she obtained a permanent position as FNRS Research Associate in 2018. Her research efforts focus on the development of receptors for the transmembrane transport of ions.

Find Hennie’s work, and other #ChemComm1st articles, in ChemComm Milestones – First Independent Articles.

Find out more on our Twitter #ChemCommMilestones #ChemComm1st.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Hiroaki Iguchi

We’re pleased to announce that Hiroaki Iguchi reached a ChemComm Milestone this year when he published his first independent research article in our journal. Check out Hiroaki’s #ChemComm1st article: ‘Emergence of electrical conductivity in a flexible coordination polymer by using chemical reduction‘. This Communication also features in our new themed collection on Functional Coordination Networks.

 

Find out about Hiroaki’s experiences as a first-time author in our interview below.

What are the main areas of research in your lab and what motivated you to take this direction?
The main direction of our research is to synthesize new solid-state materials with low-dimensional electron systems and to control their electronic states by external stimuli. So far, the discoveries of new electronic states have developed new materials such as high-temperature superconductors, quantum spin liquids and topological insulators. Since various electronic states can be stabilized in the materials with 1D and 2D electron systems, they are promising platforms for exploring new electronic properties. Recently, we are investigating molecular crystals with low-dimensional electron systems such as porous molecular conductors (PMCs), whose electronic properties can be controlled by molecular desorption/adsorption as the “chemical” external stimuli.

Can you set this article in a wider context?
Postsynthetic carrier doping is the essential technique to prepare electron-conductive pi-conjugated polymers. Some voids among the loosely packed polymer chains accommodate dopant molecules or ions, yielding the carrier doping. In contrast, the postsynthetic carrier doping in the densely packed molecular crystals is difficult due to the lack of voids. In this work, we found that the introduction of flexible ethylene moieties in the coordination polymer (CP) backbone enabled the postsynthetic carrier doping even in the densely packed molecular crystal. The flexibility played an important role in both forming π-stacked columnar structure (conduction pathway) and transforming the crystal structure under the redox reaction. Moreover, this work also indicates that the chemical doping in flexible CPs can be alternative way to prepare conductive CPs with rare through-space conduction pathway.

What do you hope your lab can achieve in the coming year?
Recently, we are actively studying porous molecular conductors (PMCs), which are new conductive porous materials sharing features of both metal-organic frameworks (MOFs) and molecular conductors. The research is still in the early stage, and we are working hard to establish the methodology for syntheses and guest-induced functional switching of PMCs. I hope we can report more PMCs and their fundamental physical properties in the coming year.

Describe your journey to becoming an independent researcher.
When I studied MMX-type chain complexes in my PhD course, my supervisor, Prof. Masahiro Yamashita told me, “Why are you still dealing with classic research? You have to challenge something new.” Then I became serious about creating new ideas for preparing novel organic-inorganic hybrid materials. Although all of them did not give results that I expected, I enjoyed my research life with a high degree of freedom. At that time, I found a new conductive molecular crystal containing naphthalenediimide (NDI) moiety, and hence I felt that NDI can be used as a conductive block molecule. After I became assistant professor in Prof. Masahiro Yamashita’s group, Masahiro gave me a chance to develop this idea. After his retirement in this March, I have managed my subgroup and actively studied conductive CPs with NDI or other π-conjugated moieties.

What is the best piece of advice you have ever been given?
My previous boss, Masahiro, was often asked, “What is science?” His answer was “Science is to create new scientific fields. Science should be not No.1 but only one.” Although I am still considering my answer, I will try my best to propose some new research concepts in the sea of science.

Why did you choose to publish in ChemComm?
I think that ChemComm is one of the world’s leading journals in the field of general chemistry. At the time I was thinking of preparing work for ChemComm, I received an invitation to submit a paper for a themed collection on “Functional Coordination Networks.” It was so timely that I decided to prepare and submit a manuscript.


Hiroaki Iguchi received B.S.(2006), M.S.(2008) and PhD(2011) in Chemistry from Tohoku University under the supervision of Prof. Masahiro Yamashita. Hiroaki’s thesis work focused on controlling electronic states of 1D halogen-bridged dinuclear metal complexes (MMX chains). In the PhD course, he also studied solid-state electrochemistry of MMX chains as a visiting student in Prof. Alan M. Bond’s group at Monash University, Australia. In 2011, he joined Prof. Nobuo Kimizuka’s group at Kyushu University, Japan, as the SPD Research Fellow of the Japan Society for the Promotion of Science (JSPS). Then, he was appointed as an Assistant Professor in Prof. Masahiro Yamashita’s group at Tohoku University in 2013 and started the research on conductive 1D halogen-bridged mononuclear metal complexes (MX chains) and porous molecular conductors (PMCs). Follow Hiroaki’s on Twitter: @HiroakiIGUCHI1

We hope you enjoyed learning about Hiroaki’s experiences becoming an independent researcher and some of the background to his research. Find Hiroaki’s Communication in our collection ChemComm Milestones – First Independent Articles and follow the hashtags #ChemComm1st and #ChemCommMilestones for more on our Twitter.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Tom Hasell

We’re excited to bring you our interview with Tom Hasell who published his #ChemComm1st article in 2016. We spoke to Tom about his experience as a first-time independent author publishing ‘Porous inverse vulcanised polymers for mercury capture

Read the interview here.

What are the main areas of research in your lab and how has your research progressed since publishing your first article?
I’ve always worked in materials chemistry. I love investigating new materials and trying to understand how they work. But as well as just academic interest, I like materials that could have practical applications. Often one of the challenges for new academic materials is that they can be expensive to produce – either because of the cost of the starting materials, or the complex processes used to make them. That can be a real barrier to industrial applications. When I started my own group, I knew I wanted us to work on interesting new materials, but I wanted us to limit ourselves to ones that were cheap and ideally sustainable, so that they would have potential for widespread use. Trying to make functional polymers out of elemental sulfur is a great example of that ambition. Sulfur is a by-product of the petrochemicals industry, and the supply outweighs demand, so you can buy it for roughly transport costs. I’d seen some early papers showing that sulfur could be made into stable polymers – which we could maybe make useful materials from. Mercury has a high affinity for binding to sulfur, so these polymers could be great filters to capture toxic mercury – if they could be made porous. The paper we published as a new group, in Chemical Communications, was the first report of making these “inverse vulcanised” sulfur polymers porous, and showed that it improved their mercury uptake.
Since then we have carried on working in sulfur polymers, it’s a fascinating new area with a lot to explore, and since that paper we have gone on to explore other ways to induce porosity in these materials, such as by salt templating to make the porosity better connected, or by using carbonisation, or coating onto porous supports to generate microporosity. There are also a lot of non-porosity based applications for sulfur polymers that will depend on their physical properties, which we have been working to improve, as well exploring sustainable crosslinkers to react with the sulfur, and how catalysts can improve the synthesis. The unique nature of sulfur based polymers gives them potential for applications in optics, batteries, and as antimicrobial materials.

Describe your journey to becoming an independent researcher.
Some people are certain that they want an academic career from the start but I was never sure what I wanted to do after I finished university. In my fourth year as an undergraduate, I did a research project in Steve Howdle’s group and really enjoyed it. He asked me if I wanted to stay on and do a PhD and I agreed – I was enjoying the research and it would put off making a decision for a while. After the PhD, I continued in research working as a postdoc for Andy Cooper. I still wasn’t sure what I wanted to do but I was enjoying the research so I just kept on at it. I was nervous of going for an academic career because although I loved research, I wasn’t sure the struggle for funding, admin, and management were for me. After sitting on the fence for perhaps a little too long I decided to go for it anyway, and applied for a Royal Society fellowship, which is what gave me the independence to start my own group. In honesty, the precarious nature of many years of short term contracts, and lack of security was difficult, and at times it was a bumpy road that almost made me leave academia. I can see why it puts people off, and I think we need to change this.

What is the best piece of advice you have ever been given?
Learn the difference between urgent and important. It’s great advice. I’m terrible at it.

Why did you choose to publish your first article in ChemComm?
ChemComm was always one of my favourite journals as PhD student and postdoc. The short format means the key message of the research tends to come across clearly. As a new group, the broad readership and good reputation of the journal made it a great target for our first paper.

Tom Hasell is a Lecturer and Royal Society University Research Fellow in the Stephenson Institute for Renewable Energy at the University of Liverpool. Originally from Yorkshire, he is a graduate of the University of Nottingham, where he stayed to complete a PhD under the supervision of Steve Howdle (Chemistry) and Paul Brown (Engineering), while collaborating closely with Martyn Poliakof, as well as placements in America (Eric Beckman, University of Pittsburg) and Japan (Satoshi Yoda, NIAST). He then joined Andy Cooper’s group at the University of Liverpool in 2008, initially as a postdoctoral researcher and later as a research coordinator. During this time he played a significant role in the development of porous organic cages. After securing a Royal Society University Research Fellowship, Tom was able to start his own independent group in Liverpool in 2015. This group is focussed on using waste to make functional new materials. He has worked in a wide range of areas across materials science, including polymers, supercritical fluids, nanocomposites, and porous materials. Tom was awarded the European Young Chemist of the year award in 2014, and was named as a Journal of Materials Chemistry Emerging Investigator in 2017. Follow Tom on Twitter: @TomHasell

Read more #ChemComm1st articles in #ChemCommMilestones – First Independent Articles  and follow the hashtags on our Twitter page.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Silvia Marchesan

In 2011, Silvia Marchesan published her first article as a corresponding author in our journal. We wanted to speak to Silvia about why she chose ChemComm as home for Tripeptide self-assembled hydrogels: unexpected twists of chirality.

Read our interview with Silvia here:

What are the main areas of research in your lab and what motivated you to take this direction?
Nature’s choice for homochirality (e.g., L-peptides) has stimulated our research, as we question it with heterochiral molecules. The scientific journey in this direction started from the design of simple and low-cost tripeptides to define self-assembly rules within chemical systems of biological relevance. We typically use 1 or 2 D-amino acids in D,L- tripeptides, and study small libraries with variations in stereochemistry or amino acid sequence. We recently established how chirality affects spatial conformation for assembly from the molecular, through the nano-, micro- and up to the macroscale. In this way, we can link macroscopic properties of the final systems back to the fine structural details of the building blocks. Our systems assemble in benign solvents, such as buffered water or acetonitrile, and design allows the fine-tuning of their lifetime and biodegradation rate. Applications vary, from biomimicry of natural structures to antimicrobial or bioadhesive soft matter (ChemComm 2020), to the bioinspired design of catalysts (ChemComm 2017), whereby function can be switched on/off with assembly/disassembly.

As Alice steps into Wonderland through the mirror, so we like to think that use of the mirror-image of natural L-amino acids enables entry into a supramolecular wonderland, whereby the building blocks are similar overall to their natural counterparts, but with a “magical twist” (indeed, often D-amino acids induce a kink in the backbone). We also like the challenge to combine different systems together at the boundary with nanotechnology: a branch of our research enjoys stimulating collaborations to attain hybrid or composite nanomaterials with carbon nanostructures for new applications in catalysis, biomaterials, biomarker detection, etc.

Can you set this article in a wider context?
The 2012 Communication set the first example whereby a simple substitution of an L-amino acid with its D-enantiomer in an unprotected (linear) peptide sequence dictated a dramatic change in self-assembly behavior, since the tripeptides with D-L-L stereoconfiguration formed nanostructured hydrogels at physiological conditions, while their homochiral analogues simply precipitated. Moreover, a simple change of order in the amino acid sequence allowed to achieve different nanomorphologies (i.e., twisted fibrils or nanotapes), giving scope for further investigations. It took some years to obtain funding for this research and gather the required resources to identify the rationale behind these observations, as well as to convince skeptics that this approach can indeed be extended to other examples, and can add function to the assemblies. Examples include catalysis (ChemComm 2017) or mimicry of biological structures, such as the extracellular matrix (ECM) to sustain cell culture (ChemComm 2016) or even to induce cell adhesion, with bioactive ECM-derived motifs (ChemComm 2020). The possibility to create a desired function with the assemblies is especially attractive to attain spatiotemporal control over reaction cascades, or to design therapeutics that are activated where and when needed.

What do you hope your lab can achieve in the coming year?
Funding! Our funded projects have ended and further resources are required to make the leap towards tailored applications. These systems have a great potential: research has identified thus far sequences with very interesting properties, such as the ability to inhibit pathological amyloid fibrillization, and to exert antimicrobial activity only when assembled. Manuscripts are in preparation, so… stay tuned! Full-atom molecular dynamics simulations have unveiled how the peptides dance as they assemble, and single-crystal XRD has provided mesmerising photographs of water-channels formed by simple sequences, and with varying diameter in the nanometer scale. Given the required resources, I am confident we can produce useful dynamic systems and perhaps even shed a new light on life’s choice for homochirality.

Describe your journey to becoming an independent researcher.
I fell in love with research at first sight, and the fire burns bright despite the rollercoaster of academic life. My journey was non-conventional, as I simply followed the passion for science that led me from Italy (M.Sc. on fullerenes under the supervision of Profs Prato and Da Ros) to the UK (to work with Dr Macmillan who shared my love for (glyco)protein engineering), Finland (where I joined the group of Prof Gahmberg on integrin biochemistry and protein-protein interactions), Australia (joint postdoc between CSIRO and Monash University to work with Prof Forsythe on nanostructured biomaterials) and then back to Italy. When I was at UCL, after work, I loved to stop by the Wellcome Exhibition Centre and the British Library to get inspired. It is there that I discovered the original drawings of Alice in Wonderland, and I am extremely grateful to my supervisors in Australia for allowing me to explore new research avenues in my “spare” time. I wrote many unsuccessful grants, and after submitting what I thought was going to be the last one (thinking of plan B, out of academia), I hit the jackpot with a starting package from the Italian Ministry of Research (MIUR) through the SIR scheme. That was a game-changer that created momentum, and talented postdocs from abroad were attracted to the team, joining forces to explore the exciting area of supramolecular chemistry.

What is the best piece of advice you have ever been given?
To be true to your dream, and commit to it 100%. Enthusiasm is contagious, and creates very positive dynamics in a team. My PhD supervisor offered plenty of quotes from Star Wars, which in turn I offer to my team now! There is also a mask of Darth Vader next to my desktop, to remind me of the urgent need to prompt and implement positive change, to create a better and more inclusive culture in science.

Why did you choose to publish in ChemComm?
During the PhD I had published one article in ChemComm as first author, and I was impressed by the rapid publication times, simple process, and above all, fair and constructive peer-review comments. The whole experience made me feel welcome and part of the scientific community, reflecting other interactions with the RSC and in the UK. ChemComm offered the perfect platform to publish our proof-of-concept and to sail it out into the wider chemistry community. It was an uplifting and totally unexpected surprise to be sitting on my desk Down Under and receive emails from the other side of the world, from colleagues, and from my PhD supervisor, with congratulations for the work. It is important for emerging PIs to receive support from the community– even a short email made a positive and lasting difference.

Marchesan’s Group in 2018, before the COVID-19 pandemic

Silvia moved to UK in 2004 to join Procter & Gamble for an R&D internship, just before taking on a PhD at The University of Edinburgh (UK). She enjoyed also the research environment at UCL (2005-2007), where her PhD supervisor, Dr. Derek Macmillan, had established a new lab. She then moved to the University of Helsinki (2008-2010) as Academy of Finland Fellow, and then to Melbourne as CRSS Fellow (2010-2012) in a joint scheme between Monash University and CSIRO (Australia’s national science agency). In 2015 she set up her independent lab at the University of Trieste (www.marchesanlab.com), and secured a tenure-track position that led her to Associate Professorship (2018) and Habilitation for a Full Professorship (2018). The research potential of heterochiral self-assembling peptides was recognized by Nature Index (2018) and Nature Chemistry (2019). Find the lab on Twitter: @MarchesanLab

Don’t forget to read Silvia’s #ChemComm1st article in our collection ChemComm Milestones – First Independent Articles. Find out more by following the hashtags #ChemComm1st and #ChemCommMilestones on our Twitter.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Sudeshna Roy

Earlier in the year, Sudeshna Roy published her first independent research article in ChemComm. As part of our ongoing #ChemCommMilestones initiative, we wanted to speak to Sudeshna about her experiences becoming an independent researcher. Read Sudeshna’s #ChemComm1st article here: Regioselective synthesis of 4-fluoro-1,5-disubstituted-1,2,3-triazoles from synthetic surrogates of α-fluoroalkynes.

Here’s our interview with Sudeshna.

What are the main areas of research in your lab and how has your research progressed since publishing your first article?
The central theme of our lab revolves around small molecules. We contribute to developing new methods and strategies to access small molecules of biological and medicinal relevance and using them as tools to probe biological questions or in human diseases. Currently, we are pursuing seemingly two disparate programs that I envision merging into a drug-discovery platform. We have always been drawn to fluorination strategies and the impressive surge in fluorinated pharmaceuticals and agrochemicals. We identified that fluoroalkynes, which would be the simplest precursor as a gateway for new fluorinated motifs, are elusive and notorious for undergoing spontaneous cyclotrimerization reactions. A search for synthetic surrogates led us into the domain of fluorinated alkenes and their fascinating chemical reactivity portfolio, primarily due to the polarity inversion feature. On the other hand, we are deeply committed to addressing the ongoing global health crisis of antimicrobial resistance by developing new chemotherapeutic agents against new and existing bacterial targets to expand our armamentarium of antibacterials. We are currently pursuing a multi-disciplinary collaborative project to develop a new class of compounds with narrow-spectrum activity against Mycobacterium tuberculosis (Mtb), the causative agent for tuberculosis. Our ultimate merger will be using the hand-tailored fluorinated compound library, developed in our lab, for ligand-based screening using 19F NMR against antibacterial targets of interest to seek effective and new antibacterials.

Since our first publication in ChemComm, the ongoing efforts have generated an array of diverse heterocyclic compounds using fluorinated alkenes as a synthetic precursor. Concurrently, we have discovered a new class of compounds that we are very excited about. The parent compound of this family shows a narrow-spectrum anti-tuberculosis activity, and other analogues show broad-spectrum activity, including methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococci (VRE).

What do you hope your lab can achieve in the coming year?
Like everywhere else in the world, our research has been severely impacted by COVID-19. All the labs at the University of Mississippi School of Pharmacy were shut down, including ours, for almost two months. We became partially operational starting mid-May at a much-reduced capacity. Accepting the reality that this will remain for a while, in the coming year, we hope to publish more in the area of fluorinated heterocycles, expand our research directions in fragment-based screening to merge our efforts of antibacterial discovery and fluorine chemistry. We also hope to continue our multidisciplinary collaboration on the tuberculosis drug discovery front. We are excited about our recent discovery of a new class of compounds that specifically inhibit Mtb’s growth and survival. We observed broad-spectrum activity through different chemical modifications of the parent compound, including MRSA and VRE. We are investigating the mechanism of action (MoA) and the biomolecular target. The parent compound’s MoA is unknown, whereas interestingly, some analogs target a protein called, MraY, which is involved in bacterial cell wall synthesis. We are definitely looking forward to resuming travel next year and attend conferences.

Describe your journey to becoming an independent researcher.
I have always been interested in chemistry and pursued B.Sc in chemistry from St. Stephen’s College in India and an M.Sc. in organic chemistry from the University of Delhi in India. During my Ph.D., I worked on the total synthesis of tetrahydrofuran-containing natural products with an anti-cancer activity that sparked my interest in small molecules’ biological applications. Hence, I expanded my focus to a more applied field of medicinal chemistry and drug discovery during my postdoctoral tenure. At the University of Kansas, I was part of the NIH-funded Molecular Libraries Probe Production Centers Network (MLPCN) Specialized Chemistry Center, where I participated in several drug-discovery projects in therapeutic areas ranging from mitochondrial permeability transition pore (mtPTP), multiple sclerosis, Alzheimer’s disease, and cardiovascular disease, to name a few. At the UNC Eshelman School of Pharmacy, I gained experience in developing inhibitors of RNA-binding proteins Hu antigen R and Musashi-1 RNA-binding proteins that are overexpressed in breast and pancreatic cancers. Through these experiences, I realized one of my strengths is building a team and leading multidisciplinary collaborative projects. It gives me a tremendous opportunity and pleasure to learn something completely new that I have never done before and integrate those skill sets in drug discovery projects.

I had an interesting journey transitioning to the University of Mississippi as a tenure-track faculty, though. I had no clue I would end up being a PI. As I was nearing the end of my postdoc tenure, I was mainly focusing on applying for industrial jobs. Being an international student, I had limited options with my then visa situation. Even though I was open to different opportunities, I always thought academia was daunting. Constantly thinking about new ideas, securing grant funding, and running a lab leaves you with not much for anything else. Thankfully, I had a couple of great mentors who believed in me and encouraged me to pursue academia. So, I applied and got lucky! Now I know all the scientific pursuits could be rewarding, despite all the challenges. We can be smart and choose how much time to spend to enjoy other aspects of life. It’s a lot of fun working with students that are so driven and passionate. It motivates me to do better to help them in their journey!

What is the best piece of advice you have ever been given?
I have been fortunate to have great mentors in my journey so far and learned a great deal through my advisors, colleagues, and students! However, there are a few that need special recognition. I will attribute my scientific growth to my postdoc advisor Prof. Jeffrey Aubé and being part of the Aubé lab. Jeff has always given me honest opinions and useful advice on setting up a lab and what to expect as a new PI. A close friend of mine, Debajit Saha, who is now an Assistant Professor at Michigan State, always told me to pursue crazy ideas and not be afraid of failure or making mistakes. I have yet to follow my crazy ideas, but I have definitely learned a lot through failures and mistakes. One of the most useful life advice I got was from my therapist. She reminded me to enjoy all aspects of life, think positively no matter what, keep dreaming where and what you want to be in the future; it will get you closer. So, I am always dreaming. Fingers crossed!

Why did you choose to publish your first article in ChemComm?
For our work on the use of fluorinated alkenes as synthetic surrogates for fluoroalkynes to access fluorinated triazoles, we wanted to reach out to a broader audience encompassing all areas of chemistry, materials to chemical biology. We hope our method for preparing fluorinated triazoles will find use in the agrochemical and pharmaceutical industry and materials sciences. We envisioned ChemComm would be a great platform to feature our work!

Bio: Sudeshna obtained her Ph.D. from the University of Missouri-St. Louis. She then joined Professor Jeffrey Aubé’s group for a post-doctoral position first at the University of Kansas and then at the University of North Carolina at Chapel Hill. Sudeshna was appointed as an Assistant Professor of Medicinal Chemistry at the University of Mississippi School of Pharmacy in 2017. Her laboratory develops and applies small molecules for various therapeutic areas, mainly focusing on antibacterial drug discovery. Follow Sudeshna on Twitter: @Roy_Laboratory

 

You can find Sudeshna’s Communication, and other #ChemComm1st articles, in our collection ChemComm Milestones – First Independent Articles.

Or follow the hashtags on our Twitter for more interviews: #ChemCommMilestones #ChemComm1st

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)