Archive for September, 2020

A radical twist to halogenations using boron tribromide

Organoboranes are extremely useful reagents for chemical synthesis; their Lewis acidic nature makes them reactive towards nucleophilic species, and their ability to participate in free-radical processes widely expands their synthetic use. Trialkylboranes (BR3) are the most widely studied in terms of borane radical chemistry, whereby alkyl radicals (R) can be generated through homolytic substitution at the boron atom under oxygen conditions to then participate in various alkylation reactions, as shown in Scheme 1a. This extremely mild radical-initiation system, using just O2 instead of heat or light for radical generation, is highly desirable in chemical synthesis, particularly for the formation of thermally unstable products.

Scheme showing radical generation from organoboranes

Scheme 1: (A) Previously known radical chemistry with organoboranes and (B) radical reactivity using trihaloboranes.

Researchers in both China and the US have now applied this concept of radical generation using trihaloboranes for halogenation. Halogenation reactions are extremely important in chemical synthesis, since the resulting halogenated products are ideal precursors for installing a wide range of functional groups through substitution chemistry. Typically, halogenation of organic molecules using trihaloboranes has been attributed to their Lewis acidic nature, but the researchers have now shown that these reagents can also act as halogen radical donors (as shown in Scheme 1b).

The researchers selected boron tribromide (BBr3) as a bromide radical donor (Br), since the B-O bond that forms upon radical generation using O2 is much stronger than the B-Br bond that breaks, making the process thermodynamically favourable. They applied this approach to investigate the hydrobromination of cyclopropanes, for the novel and selective formation of the anti-Markovnikov haloalkane product. The researchers initially optimised the reaction of cyclopropylbenzene (1a) with BBr3/O2 and found that the addition of a proton source (e.g. H2O or alcohol) was sufficient to terminate the radical reaction and give the anti-Markovnikov product (2a) as the major species (Scheme 2). Using these conditions, the substrate scope could be expanded for the hydrobromination of a wide range of cyclopropanes, including typically challenging alcohol or amine-functionalised substrates.

Reaction optimisation scheme and table for hydrobromination of cyclopropane with BBr3

Scheme 2: Initial reaction optimisation of hydrobromination of cyclopropylbenzene (1a) to give the anti-Markovnikov product (2a) as the major species.

To establish that the hydrobromination reactivity was occurring via a radical process rather than a possible acid-mediated pathway, the researchers conducted a series of control experiments. The addition of radical scavengers resulted in only the formation of the Markovnikov product, suggesting the radical process is necessary for the anti-Markovnikov selectivity observed. The absence of oxygen also shut down the reactivity, which further indicates the radical pathway as shown in Scheme 1b. Additional computations modelled a possible pathway analogous to the established radical alkylation using trialkylboranes, showing an energetically favourable radical pathway for the hydrobromination of cyclopropylbenzene using BBr3/O2 (Figure 1).

Energy profile diagram for the radical hydrobromination of cyclopropanes

Figure 1: The calculated energy profile for the hydrobromination reaction

The results in this study demonstrate that trihaloboranes, like trialkylboranes, can act as radical donors for halogenation reactions, allowing for previously unreported anti-Markovnikov selectivity in the hydrobromination of cyclopropanes. This radical reactivity could be applied in the future for the halogenation of many different organic molecules, giving way to new methods to affect selectivity that cannot be achieved using traditional acid-mediated pathways.

 

To find out more, please read:

Boron tribromide as a reagent for anti-Markovnikov addition of HBr to cyclopropanes

Matthew H. Gieuw, Shuming Chen, Zhihai Ke, K. N. Houk and Ying-Yeung Yeung

Chem. Sci., 2020, 11, 9426-9433

 

About the blogger:

Dr. Samantha Apps just finished her post as a Postdoctoral Research Associate in the Lu Lab at the University of Minnesota, USA, and obtained her PhD in 2019 from Imperial College London, UK. She has spent the last few years, both in her PhD and postdoc, researching synthetic nitrogen fixation and transition metal complexes that can activate and functionalise dinitrogen. Outside of the lab, you’ll likely find her baking at home, where her years of synthetic lab training has sparked a passion in kitchen chemistry too.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Aggregation makes fluorescent probes better and brighter

Fluorescence, the phenomenon where a molecule re-emits light upon absorption of electromagnetic radiation, is used in biological imaging to visualise structures, processes and diseases. Emission of these fluorescent molecules, known as fluorophores, in the near-infrared region is particularly advantageous, allowing for enhanced tissue penetration and reduced photodamage. Near-infrared (NIR) fluorophores are therefore attractive probes for bioimaging but are currently limited with problems such as low brightness or quenching of the emission by aggregation.

To overcome this aggregation-caused quenching effect, researchers in China turned to fluorophores that have aggregation-induced emission (AIE) properties. Aggregation-induced emission (AIE) is a concept where molecules only fluoresce upon aggregation in concentrated solutions, and not in dilute solutions where they can freely rotate. The researchers therefore designed their fluorophore to contain the molecular rotor tetraphenylethene, that can induce AIE effects and therefore boost and brighten the fluorescence.

The researchers prepared a suite of fluorophores using a central donor-acceptor-donor core, with methoxy-tetraphenylethene (MTPE) as the donor and thieno[3,4,-b]pyrazine (TP) as the acceptor. Substituents on the TP acceptor were varied, and the effects on aggregation and the fluorescence were investigated. Density functional theory calculations gave the researchers insight into the molecular conformations of the fluorophores, as shown in Figure 1. The 3 variants all showed twisted geometries (top row, Figure 1), indicating high degrees of rotation, which could then be restricted through aggregation and give rise to the desired AIE effects. Additionally, the calculations measured electronic distributions, confirming high degrees of electron conjugation in the molecules (see the HOMO diagrams, Figure 1) that are essential for fluorescence.

DFT results of AIE fluorophores

Figure 1: Results from density functional theory calculations to show molecular geometries and electron conjugation within the suite of fluorophores

The fluorescence characteristics of the variants were measured by absorption and emission/photoluminescence spectra. The absorption spectra in DMSO (Figure 2a) shows absorptions between 518 and 543 nm, with the most red-shifted (longer wavelength) absorption displayed for the most conjugated variant (MTPE-TP3). The effect of aggregation on the fluorescence was measured by adding water (in which the fluorophores showed poor solubility) to the DMSO solutions, and the resulting photoluminescence intensities showed an increase with higher water fractions. This increase in brightness (i.e. intensity) is explained by the water affecting aggregation of the fluorophores and inducing the AIE effect (Figures 2b and c).

Fluorescence spectra and aggregation effects of AIE fluorophores

Figure 2: a) Absorption spectra of the fluorophore variants; b) photoluminescence spectra of the most conjugated variant, MTPE-TP3 with different water fractions; c) corresponding photoluminescence intensity plotted against water fractions for all three variants. d) to f) additionally indicate the effect of increased viscosity (and aggregation) upon glycerol addition to the fluorophores.

The researchers also formulated nanoparticles for each fluorophore variant to allow for better water solubility and therefore biocompatibility. They found that the absorption and emission of the nanoparticles became both brighter and more red-shifted and were now within the near-infrared range for favourable biological imaging. In vitro and in vivo testing of these nanoparticles in breast cancer cells and tumour-bearing mice verified that the AIE-nanoparticles are suitable for biological imaging, and indicate their potential to assist with tumour diagnosis in future clinical settings.

 

To find out more, please read:

Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AIEgens

Ji Qi, Xingchen Duan, Yuanjing Cai, Shaorui Jia, Chao Chen, Zheng Zhao, Ying Li, Hui-Qing Peng, Ryan T. K. Kwok, Jacky W. Y. Lam, Dan Ding  and  Ben Zhong Tang

Chem. Sci., 2020, 11, 8438-8447

 

About the blogger:

Dr. Samantha Apps is a Postdoctoral Research Associate in the Lu Lab at the University of Minnesota, USA, and obtained her PhD in 2019 from Imperial College London, UK. She has spent the last few years, both in her PhD and postdoc, researching synthetic nitrogen fixation and transition metal complexes that can activate and functionalise dinitrogen. Outside of the lab, you’ll likely find her baking at home, where her years of synthetic lab training has sparked a passion in kitchen chemistry too.

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT Articles: August

We are pleased to share a selection of our referee-recommended HOT articles for August. We hope you enjoy reading these articles and congratulations to all the authors whose articles are featured! As always, Chemical Science is free to read & download. You can find our full 2020 HOT article collection here.

 

Nucleation mechanisms and speciation of metal oxide clusters
Enric Petrus, Mireia Segado and Carles Bo
Chem. Sci., 2020, 11, 8448-8456
DOI: 10.1039/D0SC03530K, Edge Article

Boron tribromide as a reagent for anti-Markovnikov addition of HBr to cyclopropanes
Matthew H. Gieuw, Shuming Chen, Zhihai Ke, K. N. Houk and Ying-Yeung Yeung
Chem. Sci., 2020, Advance Article
DOI: 10.1039/D0SC02567D, Edge Article

Free-standing metal–organic framework (MOF) monolayers by self-assembly of polymer-grafted nanoparticles
Kyle Barcus and Seth M. Cohen
Chem. Sci., 2020, 11, 8433-8437
DOI: 10.1039/D0SC03318A, Edge Article

Recent advances of group 14 dimetallenes and dimetallynes in bond activation and catalysis
Franziska Hanusch, Lisa Groll and Shigeyoshi Inoue
Chem. Sci., 2020, Advance Article
DOI: 10.1039/D0SC03192E, Minireview

Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model
Elias A. J. Post and Stephen P. Fletcher
Chem. Sci., 2020, Advance Article
DOI: 10.1039/D0SC02768E, Edge Article

A bipedal DNA nanowalker fueled by catalytic assembly for imaging of base-excision repairing in living cells
Meng-Mei Lv, Jin-Wen Liu, Ru-Qin Yu and Jian-Hui Jiang
Chem. Sci., 2020, Advance Article
DOI: 10.1039/D0SC03698F, Edge Article

Exploring modular reengineering strategies to redesign the teicoplanin non-ribosomal peptide synthetase
Milda Kaniusaite, Robert J. A. Goode, Julien Tailhades, Ralf B. Schittenhelm and Max J. Cryle
Chem. Sci., 2020, Advance Article
DOI: 10.1039/D0SC03483E, Edge Article

Engineering micromechanics of soft porous crystals for negative gas adsorption
Simon Krause, Jack D. Evans, Volodymyr Bon, Irene Senkovska, Sebastian Ehrling, Paul Iacomic, Daniel M Többens, Philip L. Llewellyn, Dirk Wallacher, Manfred S. Weiss, Bin Zheng, Pascal G. Yot, Guillaume Maurin, François-Xavier Coudert and Stefan Kaskel
Chem. Sci., 2020, Accepted Manuscript
DOI: 10.1039/D0SC03727C, Edge Article

Simultaneous Manifestations of Metallic Conductivity and Single-Molecule Magnetism in a Layered Molecule-based Compound
Yongbing Shen, Masahiro Yamashita, Brian. K. Breedlove, Carmen Herrmann, Kaiji Uchida, Goulven Cosquer, Manabu Ishikawa, Akihiro Otsuka, Shinji K Yoshina, Takefumi Yoshida, Hideki Yamochi, Seiu Katagiri, Hiroshi Ito and Haitao Zhang
Chem. Sci., 2020, Accepted Manuscript
DOI: 10.1039/D0SC04040A, Edge Article

Chemical Science, Royal Society of Chemistry

Submit to Chemical Science today! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest articles, reviews, collections & more by following us on Twitter. You can also keep informed by signing up to our E-Alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)