Archive for September, 2019

Can Al3+ Indeed Intercalate Layered Metal Oxides in Aqueous Electrolytes?

Intercalation of multivalent ions, e.g., Al3+, has received increasing attention as an energy-boosting strategy for rechargeable batteries. The charge storage process of the wide-spread Li-ion batteries relies on Li+ intercalating electrodes with layered structures. Multivalent-ion batteries could accommodate more charges than Li-ion batteries because their ions carry more charge than Li+. This concept, however, has now been challenged by a research team led by BenoÎt Limoges and Véronique Balland of Université de Paris, France. Their mechanistic investigation, published in Chemical Science, revealed that Al3+ ions were unable to intercalate electrodes in aqueous electrolytes.

The authors selected TiO2 arrays as the object of their study. These ~1 µm-high arrays were grown using the glancing angle deposition technique. By applying negative potentials to the TiO2 arrays, cations such as Al3+ could diffuse through the inter-array slits and interact with TiO2 (Figure 1).

Figure 1. Structure of the TiO2 arrays. (left) Scanning electron micrographs and (right) a cartoon illustrating ion diffusion pathways.

Electrochemistry tests elucidated that the charge-storage process of TiO2 in an Al3+-containing aqueous electrolyte correlated to proton intercalation. This conclusion was mainly based on the nearly identical cyclic voltammograms (Figure 2, top) and capacity vs. potential curves (Figure 2, bottom) of the TiO2 arrays in both AlCl3 and acetic acid aqueous electrolytes. Since acetic acid solution had no Al3+, the observed charge-storage activity could not be attributed to Al3+ intercalation. Instead, the authors argued that protons dissociated either from hydrated Al3+ cations, [Al(H2O)6]3+ or acetic acid must intercalate TiO2 and result in the observed charge-storage capacities.

Figure 2. (top) Cyclic voltammograms and (bottom) capacity vs. potential curves of TiO2 in (left) Al3+-containing and (right) acetic acid aqueous electrolytes. The electrolytes are 0.3 M KCl with different concentrations of AlCl3 or acetic acid: 0 M (black), 25 mM (blue), 50 mM (purple), 100 mM (magenta), and 250 mM (red).

The authors believe that the misconception of Al3+ intercalation is due to the overlooking of Al3+ hydration, which is inevitable when Al3+ is present in aqueous electrolytes. Removing the water shell (a prerequisite for ion intercalation) is energy costly for Al3+ because of the strong binding force between water molecules and Al3+. Additionally, even if Al3+ ions intercalate TiO2, their movement is strongly hindered by Coulombic interactions within the TiO2 lattice. The immobilized intercalated ions would then block other ions from entering the TiO2 lattice. Together, both factors prevent Al3+ from intercalating into TiO2.

In summary, this work demonstrates that the charge-storage capacity of TiO2 in Al3+-containing aqueous electrolytes is most probably due to proton intercalation. This conclusion also applies to other multivalent cations, including Zn2+ and Mn2+, as shown in this work.

 

To find out more, please read:

On the Unsuspected Role of Multivalent Metal Ions on the Charge Storage of A Metal Oxide Electrode in Mild Aqueous Electrolytes

Yee-Seul Kim, Kenneth D. Harris, BenoÎt Limoges, and Véronique Balland

Chem. Sci., 2019, doi: 10.1039/c9sc02397f

Tianyu Liu acknowledges Zachary L. Croft of Virginia Tech, the U.S., for his constructive comments on this post.

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about the communication of scientific endeavors and cutting-edge research to both the general public and other scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

10th National Conference on Inorganic Chemistry of the Chinese Chemical Society

Chemical Science was pleased to support the 10th National Conference on Inorganic Chemistry of the Chinese Chemical Society which took place at Shandong University last month. Poster prizes were given on behalf of Chemical Science as well as Inorganic Chemistry Frontiers, Materials Chemistry Frontiers, Catalysis Science & Technology, Physical Chemistry Chemical Physics, Green Chemistry, Dalton Transactions, RSC Advances, Nanoscale, Nanoscale Advances, Materials Horizons and Journal of Materials Chemistry A, B and C. Energy & Environmental Science and Sustainable Energy & Fuels also provided a joint prize. The winners are:

Poster prize winners of the 10th National Conference on Inorganic Chemistry of the Chinese Chemical Society

Yuan Xiong 熊昱安 东南大学
Southeast University
Lingling Xu 徐令令 西安交通大学
Xi’an Jiaotong University
Fan Guo 郭帆 南京大学
Nanjing University
Wenbin Wang 王文彬 华中科技大学
Huazhong University of Science and Technology
Mengfei Li 李梦菲 中国石油大学(华东)
China University Of Petroleum
Jing Dong 董婧 北京理工大学
Beijing Institute Of Technology
Bingqi Han 韩冰琪 吉林大学
Jilin University
Wenzhu Yu 于文竹 山东大学
Shandong University
Liang Zhou 周亮 北京大学
Peking University
Genfeng Feng 冯根锋 南京大学
Nanjing University
Peipei Cui 崔培培 德州学院
Dezhou University
Xiaoting Liu 刘晓婷 南开大学
Nankai University
Dong Li 李冬 厦门大学
Xiamen University
Zhi Wang 王芝 山东大学
Shandong University
Shuang Liu 刘爽 东北师范大学
Northeast Normal University

Congratulations to all the winners!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Breaking C-H bonds with water, iron, and electricity

As we transition to an energy future composed primarily of intermittent, renewable technologies, finding ways to store the excess generated charges will be critical. While the general public typically thinks of batteries, another area of massive interest is storing the electrons in a chemical bond. This can be accomplished by creating electrocatalysts that can couple an electric current with chemicals like water and oxygen to generate stable new bonds in molecules for later use as fuels. These renewably generated fuels would then be available whenever needed, like at night. However, finding efficient electrocatalysts composed of earth-abundant materials has proven challenging. Many researchers have turned to nature for inspiration by designing molecules that mimic the active sites of enzymes.

Researchers in the United States used this approach, focusing on creating high-valent iron-oxo species, which others previously identified as the key catalytic intermediates in multiple enzymatic reactions. These types of species have traditionally been synthesized by reacting a reduced iron complex with an oxygen transfer reagent, but the researchers developed a system to generate highly reactive species using electricity as the reaction driving force and water as the oxygen source. The studied catalyst is a commercially available iron(III)-aquo complex with a tetraamido macrocyclic ligand (TAML) as the ancillary ligand (Figure 1B).

Figure 1. A. Cyclic voltammagram of (TAML)Fe in acetonitrile. B. Structure of (TAML)Fe and cyclic voltammagram showing increased current upon the addition of ethylbenzene.

When analyzed by cyclic voltammetry, an electrochemical technique where you cycle the voltage between set points and measure the current output, the (TAML)Fe shows two redox events at around 650 and 1250 mV that the researchers attributed to generating the FeIV-OH and FeV(O) species (Figure 1). Addition of ethylbenzene, which should react with the FeV species, increased the current at voltages of 1250 mV and higher, indicating (TAML)Fe turnover. However, isolating the Fev(O) species proved challenging as it reacts rapidly with the (TAML)Fe to form an FeIV dimer. This also limits the efficiency of the overall system by decreasing the amount of the most reactive species in solution.

Figure 2. A, B. Products generated by oxidation of various substrates screened with (TAML)Fe for electrocatalysis with isolated yield and calculated conversion in parenthesis. C. Substrates that did not react with the (TAML)Fe complex.

Both the FeIV dimer and FeV(O) species proved capable of oxidizing C-H bonds in ethylbenzene, but the FeV(O) is much more reactive and increases the oxidation rate at high electrochemical potentials. The researchers tested the scope of (TAML)Fe reactivity using a series of compounds with benzylic C-H bonds (Figure 2). They found that the (TAML)Fe performed well with electron-rich and electron-neutral derivatives, with an electron-deficient nitro-substituted derivative showing lower reactivity. Several substrates with non-benzylic C-H bonds showed high selectivity for oxidation at the benzylic C-H bond. (TAML)Fe also showed high electrocatalytic activity for oxidizing alcohols and converted substrates as simple as cyclohexanol and as complex as a steroid to ketones in high yields (up to 97%).

This study of an earth-abundant, stable, and commercially available electrocatalyst acts as a baseline for further studies with other similar metal complexes. Despite the efficiency limits attributed to dimerization, the high stability and selectivity of the (TAML)Fe could lead to its use with a broader range of substrates with varied functional groups.

To find out more please read:

Electrochemical C–H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source

Amit Das, Jordan E. Nutting and Shannon S. Stahl

Chem. Sci., 2019, 10, 7542-7548

About the blogger:

Beth Mundy is a PhD candidate in chemistry in the Cossairt lab at the University of Washington in Seattle, Washington. Her research focuses on developing new and better ways to synthesize nanomaterials for energy applications. She is often spotted knitting in seminars or with her nose in a good book. You can find her on Twitter at @BethMundySci.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

International Conference on Energy Materials and Interfaces

Last month the North East Centre for Energy Materials (NECEM) held the International Conference on Energy Materials and Interfaces in Newcastle, UK, which was sponsored by Chemical Science. The conference covered topics including flexible photovoltaics, thermoelectric devices, computational simulations of interfaces in energy capture devices, applications of 2D materials in energy capture and storage, tailored interfaces in turbines and new conc‌epts in electrical and electrochemical energy storage.

Chemical Science sponsored a poster prize, which was awarded to Stephen Campbell from Northumbria University. RSC journals Energy & Environmental Science and Sustainable Energy & Fuels also awarded poster prizes to David Alejandro Palacios Gomez from Durham Unviersity and Wei-Hsiang Lin from National Tsing Hua University.

Energy & Environmental Science poster prize winner David Alejandro Palacios Gomez, from Durham University

Sustainable Energy & Fuels poster prize winner Wei-Hsiang Lin from National Tsing Hua University

Congratulations to the prize winners from everyone at Chemical Science!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)