Photooxidation system that’s membrane-bound for success

Polly Wilson writes about a hot Chemical Science article for Chemistry World

Photosensitiser–water oxidation catalysts in heterogeneous (top), membrane-bound (middle) and homogeneous (bottom) systems

For the first time, a water oxidation catalyst and photosensitiser have been co-embedded into a membrane to make an artificial water photooxidation system. The arrangement can generate oxygen from water at far lower catalyst concentrations than ever before.

Chemical systems to turn solar energy into fuel are of paramount importance in the quest for sustainable green energy. Mimicking natural photosynthesis, the aim is to achieve sunlight-driven conversion of water and carbon dioxide into carbohydrates and oxygen. One branch of the process involves photocatalytic water splitting, comprising oxidative and reductive half reactions. The more complex photoxidation step involves a four-electron transfer reaction and very reactive oxygen intermediates. In nature, this extremely endothermic reaction is performed by Photosystem II (PSII), using membrane bound chromophores and catalytic units.


Read the full article in Chemistry World»

Read the original journal article in Chemical Science – it’s free to download until 30th June:
Photocatalytic water oxidation at soft interfaces
Malte Hansen, Fei Li, Licheng Sun and Burkhard König
Chem. Sci., 2014, Advance Article
DOI: 10.1039/C4SC01018C, Edge Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)