Archive for the ‘RSC Advances’ Category

Advancing with Advances- How to publish and not perish (Part 2)

Why did in-house editors reject my paper? 

From the perspective of two staff editors at RSC Advances

Research papers submitted to RSC Advances are subject to initial quality checks by in-house editors before they are passed on to our expert Associate Editors for assessment.  This week we are going to take a peek behind the curtain of the editing team at RSC Advances and see how in-house editors reject papers that do not meet the journal’s criteria.

Editors first check whether a manuscript is within the scope of the journal as described on the journal website. Papers published in RSC Advances must present insights that advance the chemistry field or be of interest to chemists.  Most of the manuscripts we reject for being out of scope may contain some chemistry (for example, a chemical compound used as a drug or for drug delivery) but with the primary scientific advance in a different field such as pharmacology, statistics, genetics, etc. Manuscripts that are out of the scope of the journal are rejected without peer-review no matter how sound the science is.

Once editors are satisfied that the paper fits within the scope of the journal, we go through your manuscript to ensure that all relevant and correct documents for submission are present. All our experimental data reporting requirements can be found online. The emails we most frequently send as editors are those requesting authors for supporting data as what was supplied did not meet our requirements. We cannot publish papers where the data provided does not meet our data standards. For example, all Western blot and other electrophoresis data should be supported by the underlying uncropped and unprocessed raw images, all new small molecule crystal data must be present in the  CIF (Crystallographic Information File) format, etc.

Burlington House, London (Headquarters of the Royal Society of Chemistry)

In addition, do keep in mind good publishing practices and follow the ethical guidelines that we have listed on our Author hub. Key points to keep in mind are:

  1. Make sure you address the scope of the paper in your cover letter or in your bibliography by citing previous work from the same journal and/or similar journals.
  2. Use your own words to describe previous work and experiments, and make that sure all your references are correct.
  3. Avoid making unsupported claims about your findings and provide all data supporting your findings either in the main paper or in the Electronic Supplementary Information. The Royal Society of Chemistry also strongly encourages authors to deposit the data underpinning their research in appropriate repositories.
  4. Only submit your manuscript to one journal at a time.

Thomas Graham House, Cambridge (where Royal Society of Chemistry Publishing is based)

If your paper has already been peer-reviewed at another Royal Society of Chemistry journal, please make sure to address the previous reviewer comments and revise the paper before submitting it to RSC Advances (and preferably include the point-by-point response to the previous referee comments as well). We feel that it is very important that the time and efforts of our reviewers are duly acknowledged in this manner, and this process should also help to improve the quality of work published in our journals. Be firm yet diplomatic in your responses to referee comments (even if the referees are confrontational).  There is nothing to be gained in responding aggressively, even if you are sure you are right.  Even if the referee reports are very negative, your paper may still be accepted if the Editor is convinced by your rebuttal letter.

In-house editors support external expert Associate Editors in their handling of papers, but we also support authors too. If you have any queries about data or scope pre- or post- submission of your paper, please do get in touch with the journal and we will be happy to help.

We hope that we have provided some clarity about why in-house editors at RSC Advances reject papers and what can be done to avoid this in any future submissions!

Tune in next week for interviews with three of our Associate Editors where they discuss their most common reasons for rejecting manuscripts and reveal their best publishing tips!

You are welcome to send in any questions you have about peer-review or publishing to advances-rsc@rsc.org or post them on Twitter @RSCAdvances #AdvancingWithAdvances.

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Advancing with Advances- How to publish and not perish (Part 1)

Why did the editor reject my manuscript? 

Guest post by Professor Robert Baker, Trinity College Dublin

Most of the readers of this blog are driven by curiosity. The question “why?” is something we have at the forefront of our scientific endeavours. Why did this reaction give black insoluble gunk? Why is the reaction yield 5% (rounded up)? Some of the more interesting results have come from questioning the “why?” of failed reactions – Vaska’s complex was discovered by accident, Kubas discovered the first dihydrogen complexes because of a poor yield, and there are many more examples from all branches of chemistry.  Then we spend ages analysing the data; “why?” did the NMR spectrum have too many peaks. After that we put all the answers to our “why?” on paper and send it to a journal for peer review. But how many times do we receive the following email from an editor rejecting our carefully crafted manuscript?

Dear author,

Thank you for your recent submission to RSC Advances, published by the Royal Society of Chemistry. All manuscripts are initially assessed by the editors to ensure they meet the criteria for publication in the journal.

After careful evaluation of your manuscript, I regret to inform you that I do not find your manuscript suitable for publication in RSC Advances because it does not meet the novelty and impact requirements of the journal. Therefore your article has been rejected from RSC Advances.

Yours sincerely,

The Editor

 

Professor Robert James Baker is an Assistant Professor at the School of Chemistry, Trinity College Dublin and an Associate Editor as well as Editorial Board member of RSC Advances

In this series we will explore some of the pitfalls of submission from an editor’s point of view and move your science forward. From experience, some of the common problems revolve around cover letters, how the manuscript is presented and how to respond to referees’ comments – “why” did they not get it? “why” didn’t I think of that?

Later on in this blog series, I will be sharing some of the cover letters and reviewer responses that accompanied rejected as well as successful manuscripts that I authored (and the stories behind them) in order to highlight that not only manuscripts require to be revised. As an Associate Editor in the areas of spectroscopy, homogenous catalysis and inorganic chemistry at RSC Advances, I come across several manuscripts with cover letters in the following format:

Dear Editor:

 Here we submit the paper entitled “XXXXXXXXXXXXXXXXXX”. We would be grateful if the manuscript could be reviewed and considered for publication in RSC Advances. Thank you for your kind consideration.

Signed- The authors

Such redundant cover letters do not help the cause of the manuscript. At the very minimum, the cover letter should clearly state the advance made to literature in a manner that helps editors and reviewers evaluate the manuscript.

Here are my:

Most common reasons for rejecting a manuscript without review?

  1. Does the introduction set the scene – what is the problem the authors are looking at and why is it different to the literature. Context is key. So very short introductions with few references to the state-of-the-art are not good.
  2. Remember it is a results AND discussion section on a discussion of YOUR results. Again context – are your results good, bad or indifferent?
  3. Does the introduction and conclusion match the results? It is surprising how many manuscripts give a very ‘templated’ introduction on results from the last paper and not this current one.

Best piece of advice to a submitting author?

You are telling a story of WHY your results are important. Lead the reviewer and reader by the hand, explain everything that is important, but do it succinctly. The reader of your article wants to learn something new, so tell them what is new.

Having a manuscript rejected by an editor or peer reviewers is sometimes tough to take, especially in the early stages of your career. It’s frustrating and annoying but it happens to everyone; the comments are on your work, not you as a person or scientist. The best (though not necessarily easiest) way to look at it is as a learning experience. For example, I submitted a manuscript early in my career with the elemental analysis mixed up between two compounds; a referee picked up on this and the whole report was:

“The bulk purity of the compounds has not been proven, therefore none of the conclusions are remotely valid. Reject.”

I have not made the same mistake again!

You are welcome to send in any questions you have about peer-review or publishing to advances-rsc@rsc.org or post them on Twitter @RSCAdvances #AdvancingWithAdvances.

Tune in next week for our feature on how manuscripts are rejected by professional editors on scope and/or data concerns!

 

 

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

An Interview with Shirley Nakagaki, President of the Brazilian Chemical Society

We are delighted to announce that Shirley Nakagaki, one of our Editorial Board members, has been elected as president of the Brazilian Chemical Society.  

This makes Shirley the second ever female researcher to be president of this society in the forty-five years it has been active. To celebrate this achievement, we asked Shirley the following questions, and we hope you find her answers as motivating as we do!

  1. Can you explain your area of research for a non-specialist in the area?

My main interest lies in the study (preparation, characterization and application) of molecules called metalloporphyrins. The key application of these molecules in my research group is in the preparation of compounds known as catalysts (a kind of chemical that accelerates chemical reactions) for oxidation, sequential and esterification reactions. For example, an important oxidation reaction is one that results in an acid species (adipic acid) which is one of the reactants that produces polymeric fibres like nylon. These fibres are used in a range of materials from pantyhose to very sophisticated devices that are part of the International Space Station. In some cases, the catalytic species I study and develop are inspired by biological systems that act as catalysts, in a chemical model known as biomimetic chemistry. In particular, this means that my compounds that act as catalysts can react in a similar way to enzymes, a chemical component found in very efficient biological systems that accelerate reactions necessary to keep organisms alive. In some cases, the catalytic species I study and develop are inspired by biological systems in a chemical model known as biomimetic chemistry. This means my compounds act as catalysts, in a very similar way to enzymes.

  1. What work are you the proudest of?

Fortunately, I can say that I am proud of all my work developed in my 30-year career in the chemical sciences. I have been a supervisor to many chemistry students, supporting them through their undergraduate projects, master’s degree dissertations and PhD theses. These projects have resulted in different products such as patents and scientific papers. However, the education of new chemistry professionals, be it researchers or chemistry professors, is probably my most important job.

  1. What do you find motivating?

My motivation comes from different parts. Firstly, through being a professor, my motivation comes from my students in the classroom or in the lab. When they ask me about chemistry in general or particularly inorganic chemistry, I find motivation in trying to explain to them in the best way that they can solve whatever doubts they have. Another source of motivation comes from realizing every day, and at the end of every paper I read, that there are many things we still do not know and cannot explain in the light of science, particularly in the chemical sciences. The chemical knowledge is vast and fascinating. Everything around us, in some way, involves a chemical process that can or will be explained, either now or in some distant future, based on the advance of the scientific knowledge.

  1. How did your career path lead you to become elected as the president of the Brazilian Chemical Society?

When I was a chemistry undergraduate student in Sao Paulo University, Ribeirao Preto city campus (countryside part of the Sao Paulo State), I joined Professor Yassuko Iamamoto’s research group with a scholarship to work in the development of catalysts for oxidation reactions. Our first research results were presented in the annual meeting of the SBQ – (Brazilian Chemical Society) of which I became an associate in 1983. After that, every year I attended the annual meeting and presented the research results of my master’s degree or PhD studies. After I finished my graduate school, I joined Federal University of Paraná (a southern state in Brazil) and created my own research group. In the SBQ I joined as a director in the inorganic chemistry division, since I believed and continue to believe that I can contribute with my work to build a strong and big Brazilian chemical society that represents the strength of the chemical science in Brazilian universities as well as Brazilian research centres.

  1. What will your role entail and what are you aiming to achieve?

Firstly, I believe that my role as president of the SBQ is to contribute daily to the growth of our society and to foster the good work of the previous 21 presidents. In addition, I have a big responsibility to show young chemists, graduate and undergraduate students, the importance of our society as a civil organization. They are a voice to be heard in issues in which the chemical community can contribute to the greater society. We also hope that our voice can be one that includes, fosters, and promotes quality scientific discussion, being plural, diverse and inclusive.

  1. What are the biggest challenges facing the Brazilian Chemistry Community?

Regarding the chemical sciences, there are many challenges we face. For one, providing quality scientific education for young people in a country with continental figures and big social and income inequalities. We find a good, international level education in one part of the country and a complete lack of basic infrastructure in other parts. Regarding the scientific research, we face low and declining levels of investment, which affects the continuity of good research programs. We face many challenges to become the country we dream of.

  1. What are the most exciting areas in the Brazilian Chemistry Community?

We have many strong research areas in Brazil. These include using natural products to explore our big biodiversity, the preparation and use of new materials, and we have excellent researchers making contributions to the new and alternative energies. In addition, given our great natural resource reserve, we have brilliant researchers working on the extraction of new substances from our biodiverse biomes and developing new pharmacological alternatives from these results. Some of these natural findings are already being prepared in our universities. Our scientific community is very versatile and creative. Despite receiving little financial support, we have produced excellent results. This can be seen in the quality of our Brazilian researchers’ publications around the world. For example, I can quote the Brazilian Science Panorama 2015-2020 report from the Science, Technology and Innovation Observatory (CGEE- OCTI), which shows the Brazilian production of scientific research papers grew 32% in 2020 in comparison to 2015, while the global production only grew 27%. During these five years more than 11 million papers were indexed in Web of Science (WoS), of which 372 thousand are papers with at least one author linked to our Brazilian institutions, giving us the 13th position in global production, surpassing Russia (14th), Iran (15th), the Netherlands (16th) and Turkey (17th). In 2020, this participation reached 3.2% of global scientific research production. These figures are considering scientific papers as a whole, but according to WoS, chemistry is the second area of research in number of indexed papers, lagging only behind the engineering area. These are very relevant figures as it shows the strength of chemistry in Brazilian scientific research, which is concentrated mostly in public universities where our SBQ associates work.

  1. How does it feel being the 2nd woman to hold this position and how is this going to inspire a younger generation of female chemists?

I can see in our long line of SBQ female associates so many chemists that could be in my place. Women are about 50% of all SBQ associates. We have excellent scientists, chemical educators and researchers in our pool of associates. I am not the first female president; I am only the second one in this rough path opened by Prof. Vanderlan Bolzani. But, paraphrasing vice-president Kamala Harris, “I will make sure I will not be the last”. Hopefully, my work will serve as an example and inspiration so that women in SBQ can see that it is possible to be in my position and occupy this space, if we serve with dedication and love to the SBQ.

  1. You have been a member of the RSC Advances Editorial Board since September 2020. What would you say are the biggest strengths of the journal?

Being a member of the RSC Advances Editorial Board has been an interesting and significant experience, considering the size and relevance of the RSC to the world and to the SBQ. Through the years both societies have not only kept good relations but developed key partnerships of research. From my remote participation on the meetings (due to the new coronavirus pandemic) I gathered that the main interest of this journal is to deliver papers of unquestionable scientific quality through an open access journal. On this aspect, the journal invests greatly in its editorial board, giving them adequate support for their job. Moreover, I found it very positive the journal’s actions towards making it more inclusive and transparent.

  1. What do you hope to achieve in your career over the next 10 years?

What I hope to achieve in my career over the next 10 years is continuous progress both from scientific and educational standpoints. I hope to continue to investigate multifunctional catalytic solids aimed at sequential reactions as opposed to single process catalysts. I believe they are more adequate alternatives considering the reduction in cost, time and use of available resources during the preparation of reactions. Furthermore, shaping new generations of chemists has always been a career goal of mine, so I hope I can continue to give classes and participate in the education and formation of professionals in this area of science that is dear to my heart, Chemistry!

Please join me in extending our congratulations to Shirley for this achievement. We hope you continue to inspire the next generation of chemists!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Research Infographic: Excess chemical potential of thiophene in [C4MIM] [BF4, Cl, Br, CH3COO] ionic liquids, determined by molecular simulations

Ionic liquids are considered green solvents and can be used to extract sulfur based compounds in the desulfurization of fuels.

Gallo et al. have published an interesting research article investigating the excess chemical potential of a of imidazolium-based ionic liquids (ILs) using classical molecular dynamic simulations.

Find out more in the open access article:

Excess chemical potential of thiophene in [C4MIM] [BF4, Cl, Br, CH3COO] ionic liquids, determined by molecular simulations

Marco Gallo et al. RSC Adv., 2021,11, 29394-29406

Tweet about it here!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

RSC Advances Popular Advances – an Interview with Ponnadurai Ramasami

We are very pleased to introduce Professor Ponnadurai Ramasami, who is joint corresponding author on the paper, Theoretical study of a derivative of chlorophosphine with aliphatic and aromatic Grignard reagents: SN2@P or the novel SN2@Cl followed by SN2@C?. The manuscript was well received by reviewers and was handpicked by our reviewers and handling editors to be part of our Popular Advances collection.  Ponnadurai told us more about the work that went into this article and what he hopes to achieve in the future. You can find out more about the authors and their article below. To view our other Popular Advances, please explore our collection here.

 

Professor Ponnadurai Ramasami, CSci, CChem, FRSC, FICCE, MMast, received his PhD in Physical Chemistry and became full Professor in 2013. He leads the Computational Chemistry Group, Department of Chemistry, Faculty of Science at the University of Mauritius. The research group focuses on the use of computational methods to solve chemistry and interdisciplinary problems. The group is particularly interested in collaborating with experimentalists, and they use computational methods to complement experimental research. He has already published 260 research papers in peer-reviewed journals and he has edited several books. He is the chairman of the annual Virtual Conference on Chemistry and its Applications.

 

 

 

 

 

Could you briefly explain the focus of your article to the non-specialist (in one or two sentences only) and why it is of current interest?

The focus of the article is the computational investigation of SN2 reactions in organic molecules which contain both phosphorus and chlorine atoms.

The SN2 reaction mechanism was discovered in the 1930’s by scientists Hughes and Ingold, and since then has been used in a number of syntheses; however, it is still of current interest as new aspects of this mechanism, at the molecular level, are still being discovered. These aspects include new sites of nucleophilic attack which are not immediately chemically intuitive.

How big an impact could your results potentially have?

In textbooks, SN2 reactions are defined in a firm way, often taking the example of SN2 at the carbon atom, detailing hill-shaped potential energy surfaces and nucleophilic attack at one specific atom centre. However, our research indicates that these well-established facts may change. Potential energy surfaces may take the shape of single, double or triple wells or a combination of hill and well shapes. The most preferred site of nucleophilic attack may change according to what neighbouring groups are present in the molecule of interest. It is important to include and try to explain these differences in chemistry textbooks.

Could you explain the motivation behind this study?

The Computational Chemistry Group of the University of Mauritius (CCUoM) was set up in 2003 in the Department of Chemistry. Our interest has always been on the investigation of different aspects of reaction mechanisms. We have a programme to study SN2 reaction mechanisms, which resulted in two PhD graduates and several publications. We started by studying the effect of different nucleophiles. Another part of the programme involved studying SN2 reactions at different atoms within one molecule. This started in 2017, when we came across one experimental study which involved SN2 at the phosphorus atom. We tried to explain the results of this experimental study using computational methods, which led us to discover SN2 at the chlorine atom.

In your opinion, what are the key design considerations for your study?

For SN2 reactions, the key design considerations involve the reactive atom centres, neighbouring groups, the solvent and the nucleophiles. These may be used to tune reactions to design molecules of interest.

Which part of the work towards this paper proved to be most challenging?

Working with bulky molecules was the most challenging part. Computations involving bulky molecules are demanding in terms of computational cost. It is often challenging to strike the right balance between computational cost and accuracy of results.

What aspect of your work are you most excited about at the moment?

When this research project started, it was about SN2 reactions at the phosphorus atom but along the research journey, we stumbled on the SN2 at the chlorine atom, which offers a new world of possibilities to investigate. The possibilities are what we are most excited about.

What is the next step? What work is planned?

Our next projects will involve changing key factors in the SN2 reaction mechanism involving the chlorine atom and determining the effect. We are considering changing the nucleophiles which we investigated, modifying the solvent system, and changing neighbouring groups. We are also considering investigating SN2 reactions at other reactive atoms, such as bromine and iodine.

 

Theoretical study of a derivative of chlorophosphine with aliphatic and aromatic Grignard reagents: SN2@P or the novel SN2@Cl followed by SN2@C?

Nandini Savoo,a   Lydia Rhyman*ab  and  Ponnadurai Ramasami*ab

 

 

 

 

Submit to RSC Advances today! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest Popular Advances articles, Reviews, Collections & more by following us on Twitter. You can also keep informed by signing up to our E-Alerts.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Research infographic: SWIR emissive RosIndolizine dyes with nanoencapsulation in water soluble dendrimers

The use of small molecule fluorescent probes for high resolution in vivo biological imaging has profoundly impacted clinical diagnostics.

Jared H. Delcamp et al. from the University of Mississippi and University of Southern Mississippi have synthesised two new xanthene-based rosindolizine dyes that demonstrate great potential to be applied as fluorescent imaging probes in the shortwave infrared region.

Find out more about RozIndz dyes in the open access article:

SWIR emissive RosIndolizine dyes with nanoencapsulation in water soluble dendrimers

Jared H. Delcamp et al. , RSC Adv., 2021,11, 27832-27836

Tweet about it here!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

RSC Advances Science Communications: Detection and quantification of dioxins and furans in foods

Persistent organic pollutants (POPs) are harmful compounds resistant to biological, chemical and photolytic degradation. They are persistent in the environment especially in soils, sediments and air for several decades. Due to their toxicity, they pose a significant threat to animal, human and environmental health, as they accumulate in the fatty tissues of humans and animals. In humans, POPs have been linked to adverse health effects, such as alterations in the development of reproductive, endocrine, neurological, and immune behavior. In animals, they have caused disease and abnormalities, including certain types of birds, fish and mammals.

Dioxin-like compounds have been classified as POPs by the World Health Organization (WHO) and the US Environmental Protection Agency (USEPA) due to their hazardous properties including long shelf life, global distribution, accumulation and bioamplification in food chains; and its toxicological effects in humans, such as teratogenesis, tumor promotion, and modulation of the immune system. The POPs present in the environment have generated great interest within the scientific community due to their toxic effect, both for animal and human health.

Polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) are compounds with similar chemical properties: they are organic solids, with high melting points and low vapor pressure, have extremely low solubility in water and are adsorbed strongly on particulate matter surfaces. Polychlorinated biphenyls (PCBs) are a group of organic chemical compounds that can cause a number of different adverse effects, and there are no known natural sources of PCBs in the environment. Although biphenyls are oily liquids or solids with an appearance that varies from colorless to light yellow, some PCBs are volatile and can exist as vapor in the air. PCBs have no known odor or taste, they enter the environment as mixtures containing a variety of individual components of polychlorinated biphenyls. They do not degrade easily and therefore remain for a long time, and can be easily detected in air, water and soil. Among the harmful effects they cause on human health, such as immune and neurological dysfunctions, they are also classified as possible human carcinogens and toxic in reproduction.

Currently, there are numerous gaps with respect to knowledge about these substances, in particular about methodologies for their detection and quantification, as well as about the levels that are potentially dangerous for humans. For this reason, the development, fine-tuning and validation of new methodologies that allow innovation and improvement of novel traceability systems for these compounds is of great interest. With the advent of sophisticated chromatography techniques, the development of innovative and alternative highly sensitive analytical methods for trace analysis of these compounds is a challenge.

Finally, it is of great importance to note that there are no laboratories in Argentina with analytical methodologies that detect and quantify these analytes, which is why they become so important and of great interest to study. In this way, it would allow to have the first bases for the quality control of products of agri-food origin for export and/or of the domestic market, and the great economic impact that it generates on their traceability.

Read the article:

https://pubs.rsc.org/en/content/articlelanding/2021/ra/d1ra00599e

Ying Li, Yanan Han, Zhuochao Teng, Xianwei Zhao, Yanhui Sun, Fei Xu, Qingzhu Zhang and Wenxing Wang. RSC Adv., 2021, 11, 12626-12640.

 

About the Web Writer:

 

BIOGRAPHY

Cristian M. O. Lépori is Doctor in Chemical Sciences and is currently a researcher at JLA Argentina S.A., General Cabrera – Argentina. He researched and developed analytical methods for the detection of contaminants in food, water, and soil. He likes to plan, organize and carry out science dissemination activities. You can find him on Twitter at @cristianlepo.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Welcome to our new Associate Editor: Hideko Nagasawa

We are delighted to welcome Professor Hideko Nagasawa to the RSC Advances team this month!

Hideko Nagasawa

 

Dr Hideko Nagasawa is a Professor in the Department of Medicinal Chemistry at Gifu Pharmaceutical University, where she heads the Laboratory of Pharmaceutical and Medicinal Chemistry. She completed her PhD at Graduate School of Pharmaceutical Sciences, Kyoto University. Her research mainly focuses on drug discovery and chemical biology targeting the tumor microenvironment (TME). Projects pursued in her laboratory include the development of selective cancer therapies in TMEs of hypoxia and nutrient deprivation, and the creation of unique functional molecules such as fluorescent probes and caged compounds for the study of diverse cellular stresses.

Nagasawa says, “I am excited to join RSC Advances as an Associate Editor and look forward to contributing to the field of Chemical Biology and Medicinal”.

Browse a selection of Hideko’s RSC publications:

Asymmetric bismuth-rhodamines as an activatable fluorogenic photosensitizer
Akari Mukaimine, Tasuku Hirayama and Hideko Nagasawa
Org. Biomol. Chem., 2021, 19, 3611-3619
DOI: 10.1039/D0OB02456B

A 19F-MRI probe for the detection of Fe(ii) ions in an aqueous system
Ryo Kakiuchi, Tasuku Hirayama, Daijiro Yanagisawa, Ikuo Tooyama and Hideko Nagasawa
Org. Biomol. Chem., 2020, 18, 5843-5849
DOI: 10.1039/D0OB00903B

A Golgi-targeting fluorescent probe for labile Fe(ii) to reveal an abnormal cellular iron distribution induced by dysfunction of VPS35
Tasuku Hirayama, Masatoshi Inden, Hitomi Tsuboi, Masato Niwa, Yasuhiro Uchida, Yuki Naka, Isao Hozumi and Hideko Nagasawa
Chem. Sci., 2019, 10, 1514-1521
DOI: 10.1039/C8SC04386H

Organelle-specific analysis of labile Fe(ii) during ferroptosis by using a cocktail of various colour organelle-targeted fluorescent probes
Tasuku Hirayama, Ayaji Miki and Hideko Nagasawa
Metallomics, 2019, 11, 111-117
DOI: 10.1039/C8MT00212F

 

RSC Advances Royal Society of ChemistrySubmit to RSC Advances today! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest HOT articles, Reviews, Collections & more by following us on Twitter. You can also keep informed by signing up to our E-Alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Welcoming our new Associate Editors: Carmen L Gomes, Patrícia Valentão & Yu Wang

We are delighted to welcome Professors Carmen Gomes, Patrícia Valentão & Yu Wang to the RSC Advances team this week!

Carmen Gomes RSC Advances Associate EditorDr. Carmen Gomes is currently an Associate Professor in the Mechanical Engineering Department at Iowa State University where she is leading a successful research program on the design of novel nanoscale materials using carbon-based nanomaterials and polymers for food safety and agricultural applications. Projects pursued in her laboratory range from fabrication of polymeric nanomaterials and nanostructured devices for biosensors to bioactive delivery systems. Dr. Gomes has over 14 years of experience working in the research area of nanotechnology applied to food processing, food safety and food quality to develop effective solutions in food and agriculture production.

Gomes says, “I am excited for the opportunity to join RSC Advances as an associate editor and look forward to working with the food science and engineering community”.

 

Patrícia Valentão RSC Advances Associate Editor

Patrícia Valentão is Associate Professor with Habilitation at the Faculty of Pharmacy of University of Porto. She completed her PhD in Pharmaceutical Sciences at the University of Porto for work on Pharmacognosy in 2003. She is an Integrated Member of the Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), the Portuguese Research Centre for Sustainable Chemistry, within the “Natural Products – Chemistry and Bioactivity” group. Her research has been focused on the development and application of analytical methods for the study of terrestrial and non-terrestrial natural matrices, and on the chemical and biological characterization of natural and hemi-synthetic compounds in a context of drug discovery, to modulate diabetes, inflammatory and neurodegenerative diseases, and cancer. Her expertise is evidenced in more than 30 book chapters and more than 300 articles published in international peer-reviewed journals (h-index = 56).

 

Yu Wang RSC Advances Associate EditorDr. Yu Wang is an Assistant Professor of Food Chemistry at the Food Science and Human Nutrition Department and Citrus Research and Education Center, University of Florida. Dr. Wang’s research mainly focuses on flavor chemistry and natural product chemistry, emphasizing the flavor (aroma and taste) of fruits, herbs and other agricultural commodities, and use of citrus by-product for health benefits. She got her PhD in Food Chemistry, at Rutgers, the State University of New Jersey. Dr. Wang had her postdoc. training at Massachusetts Institute of Technology focusing on “Omics” techniques for early diagnosing inflammation bowel disease (IBD). Dr. Wang received the Alexander von Humboldt Fellowship to work in the Chair of Food Chemistry and Molecular Sensory Science at the Technical University of Munich. Her research experience includes flavor chemistry, sensory science and food/plant metabolomics. Before joining University of Florida, Dr. Wang was a Flavor Chemist at Mars Chocolate Inc, working in global R&D directing flavor application, developing novel flavor profiles, analyzing cocoa and chocolate flavor, setting up flavor training program, and providing technical guidance.

 

Browse a selection of Yu, Patrícia & Carmen’s RSC publications:

All-graphene-based open fluidics for pumpless, small-scale fluid transport via laser-controlled wettability patterning
Lucas S. Hall, Dohgyu Hwang, Bolin Chen, Bryan Van Belle, Zachary T. Johnson, John A. Hondred, Carmen L. Gomes, Michael D. Bartlett and Jonathan C. Claussen
Nanoscale Horiz., 2021, 6, 24-32
DOI: 10.1039/D0NH00376J, Communication

Novel styrylpyrazole-glucosides and their dioxolo-bridged doppelgangers: synthesis and cytotoxicity
Ana R. F. Carreira, David M. Pereira, Paula B. Andrade, Patrícia Valentão, Artur M. S. Silva, Susana Santos Braga and Vera L. M. Silva
New J. Chem., 2019, 43, 8299-8310
DOI: 10.1039/C9NJ01021A, Paper

Preventive mechanism of bioactive dietary foods on obesity-related inflammation and diseases
Jeehye Sung, Chi-Tang Ho and Yu Wang
Food Funct., 2018, 9, 6081-6095
DOI: 10.1039/C8FO01561A, Review Article

Actuation of chitosan-aptamer nanobrush borders for pathogen sensing
Katherine D. Hills, Daniela A. Oliveira, Nicholas D. Cavallaro, Carmen L. Gomes and Eric S. McLamore
Analyst, 2018, 143, 1650-1661
DOI: 10.1039/C7AN02039B, Paper

Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones
David M. Pereira, Patrícia Valentão and Paula B. Andrade
Chem. Sci., 2018, 9, 1740-1752
DOI: 10.1039/C7SC04712F, Perspective

Protective effects of theasinensin A against carbon tetrachloride-induced liver injury in mice
Wei-Lun Hung, Guliang Yang, Yu-Chuan Wang, Yi-Shiou Chiou, Yen-Chen Tung, Meei-Ju Yang, Bi-Ni Wang, Chi-Tang Ho, Yu Wang and Min-Hsiung Pan
Food Funct., 2017, 8, 3276-3287
DOI: 10.1039/C7FO00700K, Paper

RSC Advances Royal Society of ChemistrySubmit to RSC Advances today! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest HOT articles, Reviews, Collections & more by following us on Twitter. You can also keep informed by signing up to our E-Alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Welcome to our new Associate Editor: Lubomír Rulíšek

We are delighted to welcome Dr Lubomír Rulíšek to the RSC Advances team this month!

Lubomir Rulisek RSC Advances Associate Editor RSC

Lubomír Rulíšek is a Senior Research Group Leader at the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague (IOCB). He completed his master’s degrees at the Charles University, Prague and obtained his Ph.D. at IOCB in 2001 (supervised by Dr. Zdeněk Havlas). He was a postdoctoral research fellow at Lund University, Sweden, with Prof. Ulf Ryde who introduced him into theoretical bioinorganic chemistry which has been one of his favorite research themes since then. In addition, the research in the Rulíšek group encompasses various applications of quantum chemistry and quantum and molecular mechanical (QM/MM) modelling: physico-chemical principles of protein structures, protein–ligand interactions, computational electrochemistry, theoretical spectroscopy, organic reactivity, computational homogeneous catalysis, and biomolecular design. He is a true believer in indispensable and integral role of computations in contemporary chemical and biological research.

Rulíšek says, “I am grateful for the opportunity to join RSC Advances as an associate editor and look forward to serve to a large community of chemists and biologists”.

Browse a selection of Lubomír’s RSC publications:

Conformational Energies and Equilibria of Cyclic Dinucleotides In Vacuo and In Solution: Computational Chemistry vs. NMR Experiments
Gutten, O., Jurečka, P., Aliakbar Tehrani, Z., Budešínský, M., Řezáč, J., Rulíšek, L.
Phys. Chem. Chem. Phys. 2021, Accepted Manuscript
DOI: 10.1039/D0CP05993E

Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions
Dmytro Dziuba, Petr Pospíšil, Ján Matyašovský, Jiří Brynda, Dana Nachtigallová, Lubomír Rulíšek, Radek Pohl, Martin Hof and Michal Hocek
Chem. Sci., 2016, 7, 5775-5785
DOI: 10.1039/C6SC02548J

The non-planarity of the benzene molecule in the X-ray structure of the chelated bismuth(iii) heteroboroxine complex is not supported by quantum mechanical calculations
Jindřich Fanfrlík, Robert Sedlak, Adam Pecina, Lubomír Rulíšek, Libor Dostál, Ján Moncóľ, Aleš Růžička and Pavel Hobza
Dalton Trans., 2016, 45, 462-465
DOI: 10.1039/C5DT04381F

How simple is too simple? Computational perspective on importance of second-shell environment for metal-ion selectivity
Ondrej Gutten and Lubomír Rulíšek
Phys. Chem. Chem. Phys., 2015, 17, 14393-14404
DOI: 10.1039/C4CP04876H

A new insight into the zinc-dependent DNA-cleavage by the colicin E7 nuclease: a crystallographic and computational study
Anikó Czene, Eszter Tóth, Eszter Németh, Harm Otten, Jens-Christian N. Poulsen, Hans E. M. Christensen, Lubomír Rulíšek, Kyosuke Nagata, Sine Larsen and Béla Gyurcsik
Metallomics, 2014, 6, 2090-2099
DOI: 10.1039/C4MT00195H

Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives
Tibor András Rokob, Martin Srnec and Lubomír Rulíšek
Dalton Trans., 2012, 41, 5754-5768
DOI: 10.1039/C2DT12423H

 

RSC Advances Royal Society of ChemistrySubmit to RSC Advances today! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest HOT articles, Reviews, Collections & more by following us on Twitter. You can also keep informed by signing up to our E-Alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)