Polymer Chemistry Emerging Investigator- Louis Pitet

 

 

Louis M. Pitet is currently an assistant professor at Hasselt University, working in the Institute for Materials Research (IMO), located in Hasselt, Belgium. Louis’ research interests are broadly concerned with understanding processing–structure–property relationships in complex functional polymer constructs. The group has a keen interest in applying the fundamental relationships that are uncovered to global challenges in polymer science, including reutilizing plastic waste streams, creating smart scaffolds for tissue engineering, and improving processing–manufacturing efficiency with advanced reactors. Louis obtained his Bachelor’s degree in Chemistry from the Colorado School of Mines working with Prof. Daniel Knauss. He went on to obtain a PhD in 2011 in the Chemistry department at the University of Minnesota under the supervision of Prof. Marc Hillmyer, exploring the utility of ring-opening metathesis polymerization in creating functional materials. Louis moved to the Netherlands for a post-doctoral fellowship in the Institute for Complex Molecular Systems at the Eindhoven University of Technology, working with Prof. Bert Meijer. In Eindhoven, Louis helped build a program applying dynamic bonding strategies for the construction of well-defined block polymers. Since 2018, Louis has been leading his research group in Hasselt working with a diverse team currently consisting of 6 PhD students and 1 post-doctoral researcher. More details about the group and research topics can be found at www.uhasselt.be/en/onderzoeksgroepen-en/imo-imomec-afp/people/prof-dr-louis-pitet

You can follow Louis Pitet on Twitter @PitetGroup

Read Louis’s Emerging Investigator article ‘Fully biobased triblock copolymers generated using an unconventional oscillatory plug flow reactor’

Check out our interview with Louis below:

How do you feel about Polymer Chemistry as a place to publish research on this topic?

I think Polymer Chemistry is a premier journal, well-respected by everyone involved in polymer research. Polymer Chemistry consistently publishes works at the forefront of polymer science, across its diverse range of related topics, and is one of the only journals I routinely browse. The interactions with the editorial board during submission and publication have always been among the best in the publishing world. The speed and professionalism with which our manuscripts are handled is unique and refreshing.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

Polymer scientists currently face a grand challenge to adapt to a global plastic-pollution crisis, with far-reaching implications related to the health of our planet and its diverse communities. Our research is helping to advance polymer materials themselves, and transform the way we make polymers to address these challenges head-on. We do this primarily by developing innovative synthetic technology. This is tremendously challenging, considering the vast diversity of topics and expertise that are involved in polymer science – from synthesis to molecular and physical characterization to processing and reactor design. However, this is also an amazing opportunity to collaborate with an inspiring community of experts across the globe – this is one of the most rewarding parts of the job.

 

Can you share one piece of career-related advice or wisdom with other early career scientists?

Try to find a topic that is not only high impact, but will also hold your interest for a long time. Also, finding activities that energize you outside the lab/office has been invaluable for me in maintaining efficiency and staying engaged with both colleagues and students.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator- Junpeng Zhao

Junpeng Zhao received his B.S. (2005) and Ph.D. (2010) from University of Science and Technology of China under the supervision of Prof. Guangzhao Zhang. From 2007 to 2009, he undertook a joint Ph.D. appointment, supported by China Scholarship Council, in National Hellenic Research Foundation (Greece) under the supervision of Prof. Stergios Pispas. Afterwards, he was a postdoctoral researcher first at Max-Planck Institute of Colloids and Interfaces (Germany) with Prof. Helmut Schlaad and Prof. Markus Antonietti (2011-2012), and then at King Abdullah University of Science and Technology (Saudi Arabia) with Prof. Nikos Hadjichristidis (2012-2014). In early 2015, he joined South China University of Technology and began his professorship. His main research interest is synthetic polymer chemistry, with special focus on anionic polymerization, organocatalytic/metal-free polymerization, and synthesis of polymers from renewable resources. He has been the coauthor of 70 peer-reviewed papers and 15 patents, and the (co)supervisor of 25 master/Ph.D. students.

 

Read Junpeng Zhao’s Emerging Investigator’s article, ‘ Selective ring-opening polymerization of glycidyl esters: a versatile synthetic platform for glycerol-based (co)polyethers

Read our interview with Junpeng below.

 

1. How do you feel about Polymer Chemistry as a place to publish research on this topic?

Submitting my work to Polymer Chemistry ensures a pleasant reviewing process as well as timely publication.

 

2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

What I am most excited about at the moment is the strict but readily tunable chemoselectivity of two-component organocatalysts which enables precise and convenient synthesis of an increasingly large variety of functional and/or complex polymers. What I have found most challenging is understanding polymerization mechanism, without disproving it soon after.

 

3. In your opinion, what are the most important questions to be asked/answered in this field of research?

How can we avoid major side effects when trying to make the world a better place using synthetic polymers? What can we learn from nature about designing and tailoring polymer structures and functions?

 

4. Can you share one piece of career-related advice or wisdom with other early career scientists?

New successes may hide in experiments which seem to have failed at first glance.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator- Mingjun Huang

Mingjun Huang obtained his B.S. at Peking University in 2010. Then he worked on macromolecular self-assembly with Prof. Stephen Z.D. Cheng at the University of Akron, and obtained his PhD degree in Polymer Chemistry in 2015. After that he moved to MIT and joined the Jeremiah Johnson group as a postdoc, working on battery electrolyte material development. From February 2019, Mingjun started his independent career in South China University of Technology (SCUT). He is currently a professor in South China Advanced Institute for Soft Matter Science and Technology & School of Emergent Soft Matter. He mainly focuses on the novel functional soft matter development within the scope of optics, electric, and energy storage. The main research projects involve: 1) Liquid crystals/liquid crystal polymers with unprecedented structures and properties for applications in optical and electric materials; 2) Self-assembly study of macromolecules with precise chemical structures in condensed states; 3) Design of functional polymer materials for specific needs in display technology and microelectronic industry.

 

Read Mingjun Huang’s Emerging Investigator’s article ‘ Perfluorocyclobutyl-containing transparent polyimides with low dielectric constant and low dielectric loss

Read our interview with Mingjun below.

 

1. How do you feel about Polymer Chemistry as a place to publish research on this topic?

In my mind, Polymer Chemistry is a leading polymer journal for design, synthesis, structure and property study of polymer materials. Particularly for polyimide research, novelty for chemical structure as well as excellent material property is usually required. I feel a great sense of achievement for publication of this topic on this journal.

 

2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

As a polymer chemist, I am most excited about the successful collection of the new polymer samples, after a long journey of monomer design, synthesis and polymerization. I prefer to design monomer structures with simplicity and functionality.

In my research of polyimide materials, the most challenging part is the monomer structure design, i.e. how to balance the polymerization reactivity and targeted functionality in new monomer structure. Obtaining rather high purity of new monomers is also not an easy task for this step polymerization.

 

3. In your opinion, what are the most important questions to be asked/answered in this field of research?

Polyimides have great potentials for applications in microelectronic industry or flexible display technology. In my opinion, the most important question is how to integrate all the required high performances (e.g. good processibility, high transparency, low dielectric, high glass transition temperature, high thermal degradation stability) in one single material through either chemical structure or composite formulation tuning. A shortage in any important material property would prevent its practical application.

 

4. Can you share one piece of career-related advice or wisdom with other early career scientists?

I believe in-depth discussions with senior people in similar research area would be very helpful for seeking the entry point or inspiration of new ideas.

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open call to submit your plastics research to our cross-journal themed collections on ‘Plastic Conversion’ and ‘Polymer Upcycling’

The Royal Society of Chemistry has announced an open call to submit your plastics research to our themed collections on ‘Plastic Conversion’ and ‘Polymer Upcycling’.

The Royal Society of Chemistry is committed to sustainable plastics research and has published a policy statement regarding plastic waste. With increasing impact of plastic waste on the environment, it is necessary to research ways in which we can have a sustainable future for plastics.

Plastics research is interdisciplinary and involves a wide range of chemical scientists. As such, we invite you to contribute to our cross-journal themed collections by submitting your work to Journal of Materials Chemistry A, B, C, Polymer Chemistry or Catalysis Science & Technology.

 

Plastic Conversion

Joint themed collection between Polymer Chemistry and Catalysis Science & Technology

 

 

 

Catalysts have been the main driver for the design of ever new polymers with highly diverse and specialized properties. In this themed issue, we aim to highlight research that makes use of catalysis to optimize the reverse. How can we get the most value out of plastic waste? In this quest, we especially welcome manuscripts that address the challenges unique to plastics. These include but are not limited to additive impurities; mixed polymer streams; how to contact the very viscous, high molecular weight polymer with the (micro-)porous catalyst or a cleavage agent and more broadly catalytic conversion of sustainable polymeric materials for a circular plastic economy. Unconventional approaches via photo-, electro- or mechano-catalytic approaches and combinations thereof are also very welcome. We highly encourage to place the work in the context of performance metrics of green chemistry.

Submissions should fit the scope of either Polymer Chemistry or Catalysis Science & Technology. We would suggest that articles focused on synthetic and polymer chemistry aspects would be best suited to Polymer Chemistry, whereas articles focused on catalytic and/or related methodological advances would be appropriate for Catalysis Science & Technology. The collaborative joint special issue recognizes that management of plastic wastes relies on research conducted at the intersection of polymer chemistry and catalysis. You may submit to whichever journal you feel is most relevant to your current research. Please note that your article may be offered a transfer to the alternate journal if deemed more appropriate by the handling editor.

 

For more information, visit our open calls page

 

Guest Edited by:

Professor Ina Vollmer (Utrecht University, Netherlands), Professor George Huber (University of Wisconsin-Madison, USA), Professor Haritz Sardon (POLYMAT, University of the Basque Country UPV/EHU, Spain) and Professor Zhibo Li (Qingdao University of Science and Technology, China)

Submit your work to Polymer Chemistry or Catalysis Science & Technology now!

 

Polymer Upcycling

Joint themed collection between Journal of Materials Chemistry A, B and C

In 2015 alone, the global waste generated by plastic packaging applications was 82.7 metric tons (Mt). Currently, waste management practices for the end-of-life plastics exploit landfilling, industrial energy recovery from municipal solid waste incineration, pyrolysis and recycling. Due to the ubiquity and necessity of plastics in our daily life, the elimination or reduction of plastics is not foreseeable in the near future and fundamentally new science is needed to describe and understand the polymers, interfaces, decomposition and upcycling of plastics. This Themed Collection aims to explore the latest developments in materials characterization, polymer design and synthesis, physical chemistry and molecular understanding of plastic decomposition and transformation that contribute to a broad knowledge base for upcycling waste plastics.

Submissions should fit within the scope of  Journal of Materials Chemistry A, Journal of Materials Chemistry B or Journal of Materials Chemistry C. We welcome high quality studies across all fields of materials chemistry in the form of full Papers, Communications and Review-type articles (Reviews, Highlights or Perspectives) and we invite authors to select the journal that best suits their submission.

 

For more information, visit our open calls page

 

Guest Edited by:

Blair Brettmann (Georgia Institute of Technology), Marco Fraga (Instituto Nacional De Technologia Brasil), Monika Gosecka (Polish Academy of Sciences) and Natalie Stingelin (Georgia Institute of Technology)

Submit your work to Journal of Materials Chemistry A, Journal of Materials Chemistry B or Journal of Materials Chemistry C now!

 

If you would like to contribute to either of these themed collections, you can submit your article directly through the journal’s online submission service. Please add a “note to the editor” in the submission form when uploading your files to say that this is a contribution to the respective themed collection. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of the collection, and inclusion of accepted articles in the final themed collection is not guaranteed.

If you would like more information about the ‘Polymer Upcycling’ themed collection, please email Materials-rsc@rsc.org. For more information about the ‘Plastic Conversion’ themed collection, please email Polymers-rsc@rsc.org.

We look forward to receiving your submissions and showcasing this important research in our collections.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Supramolecularly cross-linked nanoassemblies of self-immolative polyurethane from recycled plastic waste: high encapsulation stability and the triggered release of guest molecules

Santra et al. use recycled plastic-waste derived monomers to synthesize a redox-responsive self-immolative amphiphilic polyurethane nanoassembly.

 

 

Polymeric nanoparticles have undeniably found numerous applications in fields ranging from medicine to nanoelectronics. Despite the significant progress in the area, there is an increasing demand in chemotherapeutics to construct polymeric nanoassemblies able to encapsulate and deliver cargo on-demand. Most polymeric nanocarriers suffer from uncontrolled disassembly leading to premature, non-specific guest release while often; guests need to be covalently entrapped to achieve high encapsulation stability.

To address these issues, Molla and collaborators developed a strategy that allows upcycling plastic waste to synthesize a redox-responsive, self-immolative amphiphilic polyurethane that assembles into robust, tightly packed nanoassemblies with high encapsulation efficiency and stability. More specifically the upcycled-plastic nanocontainers were equipped with aromatic moieties enhancing their stability, disulfide bonds offering redox response and tertiary amines inducing charge tunability. Triethylene glycol monomethyl ether units were periodically incorporated on the polymer to enhance hydrophilic interactions with water. Computational studies supported that the high encapsulation stability observed in these polyurethane nanocarriers stems from supramolecular cross-linking via π–π stacking and H-bonding interactions. Notably, in a redox environment 70 % of guest release was obtained from the self-immolative polyurethane nanocarriers while significantly reduced release was observed in polymers lacking the disulfide linker and polymers lacking the aromatic component.  The high encapsulation stability was supported by the low leakage coefficient measured in FRET experiments. Pleasingly, zeta potential measurements revealed the generation of nanoassemblies with positive surface charge at a tumor extracellular matrix relevant pH was attributed to the tertiary amine component.

In summary, a plastic waste derived monomer was used as a basis to create robust self-immolative polyurethane nanocarriers with promising biomaterial characteristics such as biocompatibility, triggered release, and environment-specific charge modulation.

Mijanur Rahaman Molla et al., Supramolecularly cross-linked nanoassemblies of self-immolative polyurethane from recycled plastic waste: high encapsulation stability and the triggered release of guest molecules, Polym. Chem., 2022, 13, 3294-3303.

Link to the paper: https://pubs.rsc.org/en/content/articlelanding/2022/PY/D2PY00341D

 

 

 

Dr. Kelly Velonia is an Advisory Board Member and a Web Writer for Polymer Chemistry. She joined the Department of Materials Science and Technology in 2007. Research in her group focuses on the synthesis and applications of bioconjugates and biopolymers.

You can follow Kelly on twitter @KellyVelonia


 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to RSC Poster Prize winners at BPC 2022

We are delighted to congratulate the poster prize winners from the Bordeaux Polymer Conference which took place between June 13-16 2022.

Poster prizes were sponsored by Polymer Chemistry, RSC Advances, Chemical Science and RSC books. The prizes were awarded by Polymer Chemistry Executive Editor Maria Southall, Associate Editor Tanja Junkers and conference chair Sébastien Lecommandoux after being judged by Simon Harrisson and the poster committee.

The RSC poster prize award winners are:

RSC Books: Florent Monie

Polymer Chemistry: Maria Psarrou

RSC Advances: Kam Poon

Chemical Science: Clémence Shvartzman

Please join us in congratulating our winners!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Announcing a new Desktop Lectureship Seminar hosted by Polymer Chemistry

The RSC Desktop Seminar Lectureship series provides an exciting opportunity for exceptional scientists to share their award-winning research virtually and for you to ask questions. Each session will either feature talks from a journal board member and a recent Lectureship winner, or by two recent Lectureship winners, spanning many topic areas and regions around the world. Further information about upcoming sessions is available here.

As part of the series, Polymer Chemistry will host a session featuring talks from 2021 Lectureship winner Prof. Brett Fors and Associate Editor Prof. Emily Pentzer.

 

Polymer Chemistry Lectureship

Wednesday 27 July 2022, 21:00 – 22:30 BST | 16:00 – 17:30 EDT

 

 

 

 

 

 

 

 

 

 Register for free here

 

Please visit rsc.li/lectureship-series for the latest updates and registration links. If you think these events would interest someone you know, please do share this message. We hope you can join us at the Polymer Chemistry Lectureship webinar or at another upcoming event. In the event that you are interested in any of the webinars but cannot make the date, register online before the scheduled event and you will be sent a link to the recording afterwards.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: ‘Design rules for performing water-sensitive ring-opening polymerizations in an aqueous dispersion’

Harrier et al. highlight the encapsulation methodology as a readily available, efficient methodology to perform ROPs in aqueous dispersions.

 

Ring opening polymerizations (ROP) are widely used to synthesize a variety of biodegradable polymers typically under the strict limitations requiring anhydrous media and inert atmosphere (usually dictating the use of complex setups such as Schlenk lines or glove boxes). These practical limitations limit the polymeric material accessible by ROP.
To address this limitation, Guironnet and collaborators implemented a droplet microfluidic encapsulation strategy and systematically investigated both the process and the formulation parameters that govern the stability of the formed micro-droplets. The identification of these parameters together with the addition of amphiphilic block copolymers (PEG-PVL, PEG-PCL, and Pluronic) and a hydrophobe (hexadecane) allowed to control the viscosity, surface tension, and hydrophobicity of the formed droplets. As a result, the conditions in which the ROP catalyst was efficiently shielded in the aqueous dispersion could be identified and used to achieve higher monomer conversion and higher molecular weight polymers in the polymerization of valerolactone and caprolactone. By changing the amphiphilic block copolymer composition, ROP reaction time could also be further improved. To highlight the strength of this approach, these design rules were also used to tune the viscosity and surface tension of the droplets during ROP of propylene oxide catalyzed by an organic Lewis-Pair catalyst system (i.e. a phosphazene base and triethyl borane), leading to the synthesis of polyether particles dispersed in water.

 

In summary this study highlights the power and versatility of the encapsulation methodology applied with an off-the-shelf droplet-based microfluidic device and establish the fundamental guiding principles to encapsulate water-sensitive polymerization catalysts to efficiently synthesize spherical polymer particles dispersed in water.

 

Design rules for performing water-sensitive ring-opening polymerizations in an aqueous dispersion, Polym. Chem., 2022, 13, 2459-2468

Link to the paper: https://pubs.rsc.org/en/content/articlelanding/2022/py/d2py00069e#cit11

 

Dr. Kelly Velonia is an Advisory Board Member and a Web Writer for Polymer Chemistry. She joined the Department of Materials Science and Technology in 2007. Research in her group focuses on the synthesis and applications of bioconjugates and biopolymers.


 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator- Saihu Liao

Profile picture of Saihu LiaoSaihu Liao studied chemistry at Huazhong University of Science and Technology, and obtained his bachelor degree in 2005. After two years of graduate study with Prof. Yuefa Gong at the same university, he joined Prof. Benjamin List’s group at the Max-Planck-Institute for Coal Research (MPI-KOFO), Germany, where he obtained his doctoral degree in organic chemistry in 2011. Then, he returned to China and joined Prof. Yong Tang’s group as a research associate at the Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences. In September 2016, he started his independent career at Fuzhou University, where he was promoted to full professor in 2017. His current research focuses on the development of new organocatalysts and new strategies for polymerization, with a special concern to photo-control and tacticity-regulation.

 

Read Saihu’s Emerging Investigator article, ‘Organocatalytic Cationic Degenerate Chain Transfer Polymerization of Vinyl Ethers with Excellent Temporal Control’

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

We are interested in the exploration of organocatalysis in polymerization, with a focus on the development of organic photocatalysts and chiral catalysts. As one of the leading journals in polymer chemistry with broad readership, Polymer Chemistry is a wonderful place to publish our research on this topic. We quite appreciate the timely and professional processing of the manuscripts, and also the constructive comments and suggestions from reviewers.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

The most exciting moment could be the time we found some new catalysts were surprisingly effective. A challenging thing to us is just to predict the performance of a new catalyst, e.g. its ability in the temporal or tacticity control.      

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator- Shaofeng Liu

Profile picture of Shaofeng LiuShaofeng Liu is a professor at College of Polymer Science and Engineering at Qingdao University of Science and Technology. He received his B.S. in 2005 from Central South University, obtained his Ph.D. in 2011 from Institute of Chemistry Chinese Academy of Sciences (ICCAS) and Université de Strasbourg (UDS) under the supervision of Prof. Wen-Hua Sun and Prof. Pierre Braunstein. He then joined the group of Prof. Tobin J. Marks at Northwestern University as a postdoctoral fellow (2011-2014). In 2015, he moved to Qingdao University of Science and Technology and started his independent research career. His current research interests include organometallic catalysts for olefin polymerization and organocatalysts for sustainable polymers by ring-opening polymerization. 

 

Read Shaofeng’s Emerging Investigator article, ‘Chromium complexes supported by NNO-tridentate ligands: an unprecedented activity with the requirement of a small amount of MAO’

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry is a leading journal and a preferred platform to publish important research in the field of polymer science.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

Our research interests include the development of organometallic catalysts for polyolefins by coordination polymerization and organocatalysts for sustainable polymers by ring-opening polymerization. Therefore, from the view of both catalytic systems (metal-based or metal-free catalysis) and resultant polymer materials (traditional and nondegradable polyolefin or degradable and recyclable polyester/polycarbonate), there seem to exit conflict of interests, which actually become our most excited aspects. For our current research, the most challenging work is designing simple catalysts to synthesize sophisticated polymers with superior performances.  

 

In your opinion, what are the most important questions to be asked/answered in this field of research?

The activity and selectivity are the most considered aspects for various polymerization reactions. In my opinion, how to balance these two aspects would be the most important question in the field of polymer synthesis.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)