Paper of the week: Binding and supramolecular organization of homo- and heterotelechelic oligomers in solutions

Supramolecular chemistry, defined as the chemistry of noncovalent bonds (such as hydrogen bonding, π–π stacking, hydrophobic interactions, etc.), is a promising tool to create functional materials. Indeed, noncovalent bonds introduce reversibility and stimuli-responsiveness to materials. Therefore, compared to high-molecular-weight covalent polymers, processing and recycling of supramolecular polymers could be easier. Furthermore, incorporating noncovalent bonds into materials can impart original properties, such as self-healing. The simplest situation occurs when oligomers are equipped with complementary or self-complementary functional end-groups. They can in principle associate to form linear chain supramolecular polymers. The strength of the association constant controls the length of the polymer. Furthermore, supramolecular organizations at mesoscopic scales often appear and they lead to a richer and interesting behavior in comparison with classical covalent polymers. Complex mesoscopic organizations were observed both in the bulk and in solution.

Graphical abstract: Binding and supramolecular organization of homo- and heterotelechelic oligomers in solutions

In this study, Leibler and co-workers reported on the subtle influence of solvent on the organization of supramolecular polymers. They synthesized homotelechelic and heterotelechelic oligomers of poly(propylene oxide) (PPO) equipped with complementary hydrogen bonding functional ends, thymine (Thy) and diaminotriazine (DAT). In a solvent that dissociates Thy–DAT hydrogen bonds, such as DMSO, the viscosity was low for all functional telechelic oligomers. In non-dissociative solvents, the addition of functional oligomers increased the viscosity. For both the homotelechelic blends and the heterotelechelics, the viscosity in toluene was about two times higher than that in chloroform. Additionally, the Thy–DAT association constant was 22 times higher. Carbon relaxation times measured by NMR and viscosity variation for solutions of different concentrations suggest a distinct supramolecular organization in chloroform and toluene: linear and cyclic supramolecular chains in chloroform and small π-stacked objects with a PPO shell and a Thy, DAT core in toluene. One might expect that when the materials are obtained by solvent evaporation, the organization in the bulk is solvent dependent as this is often the case for ABC block copolymers.

Binding and supramolecular organization of homo- and heterotelechelic oligomers in solutions by Jessalyn Cortese, Corinne Soulié-Ziakovic and Ludwik Leibler Polym. Chem. 2014, 5, 116-125.

Julien Nicolas is a web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Happy holidays from Polymer Chemistry!

All of us in the Polymer Chemistry Editorial team would like to wish you all a merry Christmas and a happy new year! The Editorial office will be closed from 24th December 2013 and will reopen on 2nd January 2014.

We’re really looking forward to 2014, which will see more high quality articles from top international polymer chemists, some great themed issues and much more.

Don’t miss out on all the journal news – follow us on twitter @PolymChem and like us on Facebook!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Poster prize winners at the 2013 International Symposium on Stimuli-Responsive Materials

Many congratulations to the winners at the 2013 International Symposium on Stimuli-Responsive Materials! 

Chosen by an independent panel, the winners were: Akira Matsumoto (Institute of Biomaterials and Bioengineering at Tokyo Medical and Dental University) for the Journal of Materials Chemistry A, B & C poster prize, Justin Poelma for Polymer Chemistry and Saemi Oh for Soft Matter (University of California, Santa Barbara). 

The symposium which focuses on the field of stimuli-responsive materials from academia, industry, and government took place in October (20 – 22) this year at the Hilton Sonoma Wine Country in Santa Rosa, CA and was co-sponsored by the Royal Society of Chemistry. 

Akira Matsumoto

Akira Matsumoto receiving his poster prize for Journal of Materials Chemistry A, B, C

Justin Poelma

Justin Poelma receiving his prize for Polmer Chemistry

Saemi Oh winning the Soft Matter poster prize

Follow the latest journal news on Twitter @PolymChem or go to our Facebook page.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: All-carbon composite paper and its application in supercapacitors

Flexible papers, which utilize graphene (G) sheets as building blocks in vacuum-assisted self-assembly, have already been developed as binder-free flexible electrodes for supercapacitors due to their excellent mechanical flexibilities and electrical conductivities. Nevertheless, in most cases, the large specific surface area of the closely-packed and oriented G sheets throughout the G papers is inevitably lost which significantly reduces their potential application as supercapacitor electrodes. Thus, it is still a great challenge to develop a feasible and effective way to fabricate G-based hybrid papers as flexible electrodes with relatively high capacitances and without the sacrifice of their good cyclic stabilities.

Graphical abstract: All-carbon composite paper as a flexible conducting substrate for the direct growth of polyaniline particles and its applications in supercapacitors

In this study, Liu and co-workers reported a new strategy for the synthesis of polyaniline (PANI) nanostructures on a flexible G–carbon nanotube (G-CNT) composite paper substrate, which can be directly used as flexible electrodes possessing both electric double layer (EDL) capacitance and pseudocapacitance. The ternary hybrid paper exhibited a reversible capacity of up to 432 F g-1 at a discharge rate of 0.5 A g-1, which was much larger than that of bare G–CNT composite paper (172.4 F g-1); and its cyclic performance was dramatically enhanced, sustaining greater than 96% of its original capacitance after 600 charge–discharge cycles. Besides, the good electrical conductivity of the G–CNT composite paper provided improved conductive pathways for charge transfer at the electrodes thus resulting in superior capacitance during charge–discharge processes. Therefore, the method reported here provides a simple and efficient approach to fabricating G–CNT–PANI ternary hybrid papers with designed hierarchical nanostructures, and may be easily extended to the design of next generation high performance flexible supercapacitors.

All-carbon composite paper as a flexible conducting substrate for the direct growth of polyaniline particles and its applications in supercapacitors by Chao Zhang, Weng Weei Tjiu and Tianxi Liu Polym. Chem. 2013, 4, 5785-5792.

Julien Nicolas is a web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

PPC 2013:Polymer Chemistry poster prize winners!

Polymer Chemistry was delighted to award three Poster Prizes at the 13th Pacific Polymer Conference, held in Kaoshiung, Taiwan between 17-22nd November 2013. The winners were:

Daisuke Aoki
‘Synthesis and Characterization of Rotaxane-Linked Graft Polymers’

Hua Deng
‘The Electrical Property-Strain Sensing Behavior of CPCs Based on Polyurethane’

Chieh-Cheng Huang
‘Hypoxia-Induced Therapeutic Neovascularization in A Mouse Model of An Ischemic Limb Using Cell Aggregates Composed of HUVECs and cbMSCs’

Congratulations to all three winners!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: A CeO2/PVDC hybrid latex mediated by a phosphonated macro-RAFT agent

Combining organic matter with divided inorganic matter (nanoparticles, clays, nanofibers, etc.) is one of the main current trends to bring about new properties to polymer films. More specifically, emulsion polymerization allows the elaboration of waterborne hybrid films by incorporating mineral fillers into polymer particles to create hybrid latexes. Hence, when such latexes are directly applied as a coating, mineral entities are well distributed within the polymer matrix. Cerium oxide nanoparticles possess valuable properties, such as catalytic oxidation activity, relatively high ionic conductivity, and great potential as UV stabilizers. However, to benefit from the specific properties provided by nanoceria, a preliminary step is required in order to compatibilize the mineral phase with the polymer phase.

Graphical abstract: A CeO<sub>2</sub>/PVDC hybrid latex mediated by a phosphonated macro-RAFT agent

In their paper, Lacroix-Desmazes and co-workers reported the synthesis of a CeO2/poly(vinylidene chloride) (PVDC) hybrid latex carried out via the functionalization of CeO2 nanoparticles by reversible addition-fragmentation chain transfer (RAFT) polymerization from a phosphonated macro-RAFT agent, with very efficient formation of hybrid structures (neither free ceria nanoparticles nor free latex particles). This hybrid latex, obtained by emulsion polymerization with a reasonably high solid content (25%), represents a good candidate for the elaboration of high performance coatings. Furthermore, the authors also considered the use of such hybrid latexes as templates for the preparation of functional organic or inorganic porous materials with CeO2 nanoparticles (or other nanoparticles) evenly distributed in the porous matrix.

A CeO2/PVDC hybrid latex mediated by a phosphonated macro-RAFT agent by Jérôme Warnant, Jérôme Garnier, Alex van Herk, Pierre-Emmanuel Dufils, Jérôme Vinas and Patrick Lacroix-Desmazes Polym. Chem. 2013, 4, 5656-5663.

Julien Nicolas is a web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: Water-soluble BODIPY-conjugated glycopolymers as fluorescent probes for live cell imaging

Fluorescent probes have attracted significant attention in targeted imaging and early detection of tumor cells. Detection of real biomarkers in physiological fluid samples can dramatically impair fluorescent agent sensitivity and specificity because of biofouling and nonspecific binding. These uncertainties and drawbacks have limited the practical use of fluorescent agents in a clinical environment for medical diagnostics. Hence, the development of novel fluorescent materials with high cellular internalization efficiency, good photostability, and high specificity for tumor cell staining is in urgent demand.

Graphical abstract: Water-soluble BODIPY-conjugated glycopolymers as fluorescent probes for live cell imaging

In this article, Zhang, Li and co-workers synthesized by Atom Transfer Radical Polymerization (ATRP) a highly water-soluble, multivalent and highly specific BODIPY-conjugated glycopolymer for direct tumor cell imaging, which showed good photostability. The cell viability of BODIPY-conjugated glycopolymers against HepG2 and NIH3T3 cells was more than 80%, indicating that the glycopolymers have low cytotoxicity to living cells. Moreover, simple incubation of living cells with a BODIPY-conjugated glycopolymer led to efficient internalization into HepG2 and clear visualization in cytoplasm, due to the high brightness of BODIPY and good specificity between HepG2 and galactose as compared to NIH3T3 cells. These results suggest that BODIPY-conjugated glycopolymers have potential use as fluorescent probes in live cell imaging.

Water-soluble BODIPY-conjugated glycopolymers as fluorescent probes for live cell imaging by Zhentan Lu, Lin Mei, Xinge Zhang, Yanan Wang, Yu Zhao and Chaoxing Li Polym. Chem. 2013, 4, 5743-5750.

Julien Nicolas is a guest web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: Highly stretchable and resilient hydrogels

Hydrogels are chemically or physically cross-linked three-dimensional networks that are water insoluble but can absorb a large amount of water or biological fluids and maintain their semisolid morphology. Besides their various applications in superabsorbents, cosmetics and food, contact lenses, actuators and sensors in the materials science domain, hydrogels have become more and more attractive in artificial implants, biomedical devices, tissue engineering and regenerative medicine, etc., due to their unique properties such as similar flexibility, high water content, and molecule diffusion to natural tissues. However, unlike natural hydrogel-like bio-tissues, such as skin, muscle, cartilage, tendon, and blood-vessel which are generally strong and resilient, classic hydrogels are often brittle and have very poor mechanical performance, including low strain to break, low toughness and high strain–stress hysteresis, especially in the high strain region. Thus, design of hydrogels with good mechanical properties, such as high toughness, high stretchability and resilience, is crucially important and has drawn the extensive interest of many scientists.

Graphical abstract: Highly stretchable and resilient hydrogels from the copolymerization of acrylamide and a polymerizable macromolecular surfactant

In this paper, Huang, Guo and co-workers developed a novel micellar cross-linking copolymerization method to prepare highly stretchable and resilient hydrogels. The polymerization was based on free-radical copolymerization of water soluble acrylamide and a polymerizable macromolecular surfactant (i.e., amphiphilic polyurethane macromonomer) which can self-assemble into micelles acting as multifunctional cross-linkers. The mechanical properties, such as breaking elongation ratio, modulus and fracture toughness can be easily adjusted by varying the concentration of the polymerizable macromolecular surfactants. In addition, the mechanical energy storage efficiency (also known as resilience) was more than 96% at a strain up to 400%. These findings established a strategy for the preparation of hydrogels that combine high extendibility with excellent resilience and may greatly benefit the further use of hydrogels in tissue engineering and other soft materials research fields.

Highly stretchable and resilient hydrogels from the copolymerization of acrylamide and a polymerizable macromolecular surfactant by Mei Tan, Tingting Zhao, He Huang and Mingyu Guo Polym. Chem. 2013, 4, 5570-5576.

Julien Nicolas is a guest web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Interview with Christopher Barner-Kowollik

You may have seen our recent profile of Polymer Chemistry Associate Editor Christopher Barner-Kowollik. Here, we ask Christopher more about his career, research and the challenges polymer chemistry can solve.

Which projects are you working on at the moment?

We have a very broad portfolio of project areas in my team, divided into the research platforms ‘synthetic method development’, ‘advanced hybrid materials’, ‘underpinning mechanisms’ and ‘advanced polymer characterization’, with several parallel projects in each. Light driven surface encoding and recoding protocols with applications in cell guidance as well as targeted cell attachment are certainly an important activity, including the development of new photo-chemical reaction sequences. We continue to have a strong interest in biomaterials modification both in solution and the solid state and have not too long ago expanded our portfolio into biomimetic system ranging from universally adhesive bonding/debonding systems to bionspired self-folding single chains and nanoparticles. The design of new functional direct laser writing chemistries featuring reactive surfaces has recently moved into our centre of interest, too, as have supramolecular polymer systems with switchable property profiles. Although a smaller activity, the mechanistic study of photoinduced processes and polymerizations is still an important fundamental activity. For more information on all of our activities, please visit www.macroarc.de.

What motivated you to specialise in polymer chemistry?

I was trained as a physical chemist (albeit with a macromolecular touch) and became continuously more interested in synthetic polymer chemistry over the years. Polymer chemistry offers such a wide variety of research activities and requires knowledge from many chemical disciplines including organic, inorganic, physical and analytical chemistry that very much appeals to me. In addition, I always liked generating materials that can find applications as well as the interactions with industrial partners.
Nevertheless, there is ample room for fundamental research in polymer science and many unanswered questions and challenges exist, which require creativity and clever ideas.

What are the hot topics in polymer research at the moment?

In terms of general challenges that polymer chemistry can and must contribute to solutions for are efficient energy storage, conversion and handling as well as advanced materials for biomedical applications, from regenerative medicine to delivery systems. To address these broad challenges, we as synthetic polymer chemists have to provide solutions for the next step change in our ability to synthesize macromolecules, be it via the provision of precision surface design methodologies, controlling release from polymer systems, folding polymers, sequence controlled polymers or combining synthetic polymer chemistry with biomimetic approaches. Further, many solutions for applications require fine control over network properties, which is not yet available (e.g. monodisperse networks). Some very exciting work is currently also being done in the area of self-healing materials and sheet-like two dimensional polymers. In the materials research area, mimicking nature’s best materials such as nacre is an exciting topic. That said, the field is so diverse that one can identify many hot areas – there is rarely anything non-relevant. It all depends on one’s personal interests and views.

What current problem would you like to see science provide a solution to?

A cure for cancer would certainly be high on the list, but I believe the provision of clean drinking water to the world’s population would probably save even more lives.

What do you find to be the most rewarding aspect of your career?

Discussing and debating scientific questions (down to the details!) with my coworkers and colleagues as well as educating young scientists at all stages of their careers from undergraduate researcher to PhD student to junior group leader.
It is such a rewarding experience to solve a scientific problem and to see enthusiastic researchers mature into confident scientists.

What’s the secret to being a successful scientist?

Curiosity, creativity, very hard work and perseverance as well as the ability to enjoy and part-take in aspects of life that have nothing to do with science (e.g. music, theatre, literature, your family, friends).

Which scientist past or present do you most admire?

Charles Darwin for arguably providing the most influential theory (fact!) in the history of science.

If you weren’t a scientist, what would you be?

On the day of enrolling at university, I was still considering two options: Chemistry or History, both of which I love. No question, as an alternative to the natural sciences, I would have loved to study history – and maybe I will do some day! I have the highest respect for historians and find the works of contemporary historians such as Ian Kershaw absolutely fascinating reading.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: DNA binding ability of macromolecular platinum-drugs

Cisplatin (cis-diamminedichloroplatinum(II) (CDDP)) is a well-known platinum anticancer drug effective to treat solid tumours in head and neck, non-small cell lung, ovarian and testicular cancers. However, the use of cisplatin also results in severe side effects as well as resistance against the drug. The next generation of platinum drugs had either different amine ligands to replace NH3 or a different leaving ligand to replace chloride to improve water-solubility and stability, and also to reduce side-effects. Meanwhile, Pt(IV) prodrugs were also developed to combat excessive toxicity but also to confer targeting ability for improved anticancer activity.

Graphical abstract: Macromolecular platinum-drugs based on statistical and block copolymer structures and their DNA binding ability

In this article, Stenzel and co-workers designed three different macromolecular Pt-drugs using Cu-click chemistry to attach a bidentate amino ligand to the polymer. Two statistical copolymers with different ligand densities were prepared, which were compared to the block copolymer. DNA binding studies revealed that the statistical copolymer with the highest density of Pt-drugs had the highest affinity to the DNA, due to a multivalent effect. Interestingly, when evaluating the cytotoxic effect of these macromolecular drugs using OVCAR-3 cells the activities of all three polymer architectures were similar. It can therefore be concluded that although DNA binding tests may give an initial indication on the ability of the structure to bind to the DNA, they cannot predict the outcome.

Macromolecular platinum-drugs based on statistical and block copolymer structures and their DNA binding ability by Khairil Juhanni Abd Karim, Sandra Binauld, Wei Scarano and Martina H. Stenzel Polym. Chem. 2013, 4, 5542-5554.

Julien Nicolas is a guest web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)