Emerging Investigator Series – Annalisa Chiappone

Annalisa Chiappone is Assistant Professor in Industrial Chemistry in the Department of Chemical Science and Geology of the University of Cagliari since October 2021. With a background on materials engineering, she obtained her Ph.D. in Materials Science from Politecnico di Torino in 2012 with a Thesis on photocured polymer electrolytes membranes reinforced with natural fibers for Li-ion batteries. Afterwards, she moved to the Italian Institute of Technology, Center for Sustainable Future Technologies. She worked on the development of functional polymeric materials for different applications including sensors and materials for energy and electronics. In 2015 she moved her interests towards the development of smart formulations for 3D printing. In 2018, she moved back to Politecnico di Torino as researcher to set up a platform dedicated to 3D printing specifically focused on light activated reactions. She has now moved her research to the University of Cagliari where she is exploiting the chemistry facilities to improve the study on polymeric materials for advanced applications. Her interest are focused on photocurable polymers and light-induced 3D printing, she recently focused on the modification of natural polymers to make them suitable for 3D printing.

 

Read Annalisa’s Emerging Investigator article, Vat 3D printing of full-alginate hydrogels via thiol–ene reactions towards tissue engineering applications, DOI D3PY00902E

 

Check out our interview with Annalisa below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry, with its high quality and reliability, is undoubtedly a prestigious journal for polymer scientists, as all RSC journals are for chemists. Furthermore, Polymer Chemistry is a journal with a broad readership, interested in polymer synthesis but also with an eye on processing and applications, thus it is a perfect journal to showcase our work that aims at optimizing easy modification processes to make natural polymers suitable for 3D printing in view of their biomedical application.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

To be frank, since my academic studies, I have always been fascinated by polymer science and, still now, every new trial and every test that I do in my lab is something that excites me. So it’s hard to give a short answer to this question.

But, talking about my research, since 2015 I focused on the development of new materials for light-induced 3D printing. This processing technique is fascinating and can push the properties of materials to another level for their application in several fields. In the last years, we developed 3D printable polymers from natural sources, alginate is one example, to obtain 3D shaped hydrogels. The possibility to control the architecture of the hydrogels, maintaining the cytocompatibility of the natural polymers can help in making a step further in the biomedical field.

My new challenge is now the use of natural materials directly extracted from agri-food waste. Nature is a wiser chemist than us, and even waste can offer a large variety of molecules and polymers with fantastic properties, we just need to learn how to use to our best what we already have.

In your opinion, what are the most important questions to be asked/answered in this field of research?

The development of new material from waste is a topic that is gaining attention because we really need to enter in the mind-set of a greener chemistry. So, the question could be “How to do this in polymer chemistry?”. In my opinion the focus on waste valorization is a good start, but it’s not enough, I think that scientists must start looking at the impact of the whole processes that they develop, from extraction procedures to modification or synthesis and processing, each step must be as “green” as possible.

Can you share one piece of career-related advice or wisdom with other early career scientists?

What I have learned in the last years is the importance of good collaborations and good discussions with other scientists. Being able to listen to other’s ideas with a critical mind and discuss them, to build new projects, really helps in growing up as a scientist. And you never know, constructive ideas can come from somebody working in completely different environments and in other countries as well as from our office neighbour, you just need to communicate with an open mind.

Furthermore, it is also important to make the effort to talk with people working in different fields: even if sometimes it feels like talking in different languages, this can really open the eyes on different perspectives helping to have much better overview of your work.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Alex J. Plajer

Alex studied chemistry at the University of Heidelberg (B. Sc. 2015) and the University of Cambridge (M. Phil. 2016). As a Cambridge Trust Vice Chancellor scholar, he studied the supramolecular realm of main group chemistry under the supervision of Prof. D. S. Wright and received his PhD in 2020. After post-doctoral research supported by a Royal Commission for the Exhibition of 1851 research fellowship at the University of Oxford, he started his independent career at the Free University of Berlin in the fall of 2021 as a Liebig fellow. In 2024 he will move to the University of Bayreuth to take up an appointment as a tenure track Junior Professor. His work is concerned with the development of synthetic methodologies for new functional and degradable polymer backbones. Find out more about his work on Twitter/X @AJPlajer or on www.agplajer.com.

Read Alex’s open access Emerging Investigator article, Ring-opening terpolymerisation of phthalic thioanhydride with carbon dioxide and epoxides, DOI D3PY01022H.

 

Read our interview with Alex below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry really stands out as a platform for publishing our research. One of its notable strengths lies in its expeditious publication process, ensuring that our findings reach the scientific community in a timely manner, which is vital for a young research group given the various age deadlines we face. We also found that having scientific editors who are experts in the field contributes to the peer-review process as they also make valuable scientific suggestions and never fail to pick reviewers that teach us how to improve the quality of our work.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

As a synthetic inorganic chemist by training who didn’t know what a DSC was until the last months of his Postdoc, I find great excitement in delving into the material properties of the polymers we prepare. It’s particularly intriguing to investigate how these properties evolve when transitioning to polymers incorporating heavier elements like sulfur offering a fresh perspective on the potential applications of our creations.

One of the hurdles I face as a young Principal Investigator is not doing much experimental work anymore. Nonetheless, I remain optimistic about the possibility of returning to the fume hood in the future (or as we say in German: “Die Hoffnung stirbt zuletzt”)!

 

Can you share one piece of career-related advice or wisdom with other early career scientists?

To be open to accept help and advice from everyone.

 

 

To find out more about his work, follow Alex on on Twitter/X @AJPlajer or check out his lab’s web page.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Chalcogen Containing Polymers themed collection

We are very pleased to announce the Polymer Chemistry themed collection on Chalcogen Containing Polymers!

 

Chalcogen-based polymers have seen a resurgence in interest over the last several years. Due to the versatile and intriguing chemistry of sulfur, selenium and tellurium, polymers containing these elements have found diverse applications in polymer and material science. This collection includes studies on the synthesis and applications of these polymers, as well as fundamental theoretical and mechanistic studies. The Guest Editors for this collection are:

  • Professor Justin M. Chalker (Flinders University, Australia)
  • Professor Rongrong Hu (South China University of Technology, China)
  • Professor Jeffery Pyun (University of Arizona, U.S.A.)

In their Editorial, Guest Editors Justin M. Chalker, Rongrong Hu and Jeffrey Pyun focus on the synthesis, structures, and functions of a large variety of sulfur- and selenium-containing polymers, including sulfur-rich polymers prepared from inverse vulcanization or related approaches, polysulfites, polysulfones, poly(disulfide)s, polythioethers, polydithiocarbonates, polymonothiocarbonates, polythioamides, poly(thiazolidin-2-imine)s, and conjugated polythiophenes, which have been synthesized from readily available chalcogen-containing monomers, such as elemental sulfur, SO2, thiols, carbonyl sulfide, S/Se-containing vinyl monomers, cyclic thiocarbonates, diisocyanates and more.

 

The full collection can be found here and we have also highlighted a selection of articles below. We hope you enjoy these and the rest of the articles included in the collection.

 

Organosulfur polymer-based cathode materials for rechargeable batteries

Siyuan Ren, Pengfei Sang, Wei Guo and Yongzhu Fu

Polym. Chem., 2022, 13, 5676-5690

 

Fabrication of multi-responsive photonic crystals based on selenium-containing copolymers

Bin Xu, Xiaoliang Ma, Anqi Dai, Xiaofeng Pan, Xiangqiang Pan, Na Li and Jian Zhu

Polym. Chem., 2022, 13, 4290-4297

 

Molecular level understanding of the chalcogen atom effect on chalcogen-based polymers through electrostatic potential, non-covalent interactions, excited state behaviour, and radial distribution function

Asif Mahmood, Ahmad Irfan and Jin-Liang Wang

Polym. Chem., 2022, 13, 5993-6001

 

Economical synthesis of functional aromatic polythioamides from KOH-assisted multicomponent polymerizations of sulfur, aromatic diamines and dialdehydes

Yang Hu, Lihui Zhang, Zhuang Wang, Rongrong Hu and Ben Zhong Tang

Polym. Chem., 2023, 14, 2617-2623

 

A comparison of adhesive polysulfides initiated by garlic essential oil and elemental sulfur to create recyclable adhesives

Anthony E. Davis, Kyler B. Sayer and Courtney L. Jenkins

Polym. Chem., 2022, 13, 4634-4640

 

Enhancement of thermomechanical properties of sulfur-rich polymers by post-thermal treatment

Nara Han, Woongbi Cho, Jae Hyuk Hwang, Sukyoung Won, Dong-Gyun Kim and Jeong Jae Wie

Polym. Chem., 2023, 14, 943-951

 

Straightforward synthesis of aliphatic polydithiocarbonates from commercially available starting materials

Timo Sehn, Birgit Huber, Julian Fanelli and Hatice Mutlu 

Polym. Chem., 2022, 13, 5965-5973

 

Thiolactone chemistry, a versatile platform for macromolecular engineering

Nicolas Illy and Emma Mongkhoun 

Polym. Chem., 2022, 13, 4592-4614

 

Mechanical properties and structures under the deformation of thiophene copolymers with cyclic siloxane units

Takuya Matsumoto, Masaki Kashimoto, Chihiro Kubota, Shohei Horike, Kenji Ishida, Atsunori Mori and Takashi Nishino

Polym. Chem., 2022, 13, 5536-5544

 

Facile construction of functional poly(monothiocarbonate) copolymers under mild operating conditions

Thomas Habets, Fabiana Siragusa, Alejandro J. Müller, Quentin Grossman, Davide Ruffoni, Bruno Grignard and Christophe Detrembleur

Polym. Chem., 2022, 13, 3076-3090

 

All the articles in the collection are currently FREE to read until 17th November 2023!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2024 Polymer Chemistry Lectureship – Open for nominations

Do you know an early-career researcher who deserves recognition for their contribution to the polymer chemistry field?

 

Polymer Chemistry is pleased to announce that nominations are now being accepted for its 2024 Lectureship award and will close on 31 January 2024. This annual award was established in 2015 to honour an early-stage career scientist who has made a significant contribution to the polymer field.

 

 

Eligibility

To be eligible for the lectureship, candidates should meet the following criteria:

  • Be an independent researcher – PhD students and postdoctoral research associates are not eligible
  • Be actively pursuing research within the polymer chemistry field, and have made a significant contribution to the field
  • Be at an early stage of their independent career (this should typically be within 12 years of attaining their doctorate or equivalent degree, but appropriate consideration will be given to those who have taken a career break, work in systems where their time period to independence may vary or who followed an alternative study path)
  • Have a publication as a corresponding author in Polymer Chemistry within the 3 years prior to the nomination deadline

 

How to nominate

Nominations must be made via email to polymers-rsc@rsc.org, and include the following:

  • The name, affiliation and contact details of the nominee, nominator and referee
  • An up-to-date CV of the nominee (1 – 3 A4 page maximum length)
  • A letter of recommendation from the nominator (500 words maximum length). The relationship between nominator and nominee should be stated in the letter.
  • A supporting letter of recommendation from a referee (500 words maximum length). This could be from the nominee’s academic mentor, PhD supervisor or postdoc for instance. The relationship between referee and nominee should be stated in the letter.
  • The nominator must confirm that to the best of their knowledge, their nominee’s professional standing is as such that there is no confirmed or potential impediment to them receiving the Lectureship

Please note:

  • Self-nomination is not permitted
  • The nominee must be aware that he/she has been nominated for this lectureship
  • Previous winners and current Polymer Chemistry Editorial Board members are not eligible
  • As part of the Royal Society of Chemistry, we have a responsibility to promote inclusivity and accessibility in order to improve diversity. Where possible, we encourage each nominator to consider nominating candidates of all genders, races, and backgrounds. Please see the RSC’s approach to Inclusion and Diversity.

 

Selection

  • All eligible nominated candidates will be assessed by a judging panel made up of the Polymer Chemistry Editorial Board, any Editorial Board members with a conflict of interest will be ineligible for the judging panel.
  • The judging panel will consider the following core criteria:
    • Excellence in research, as evidenced in reference to originality and impact
    • Quality of publications, patents or software
    • Innovation
    • Professional standing
    • Independence
    • Collaborations and teamwork
    • Evidence of promising potential
    • Other indicators of esteem indicated by the nominator
  • In any instance where multiple nominees are judged to be equally meritorious in relation to these core criteria, the judging panel will use information provided on the nominee’s broader contribution to the chemistry community as an additional criterion. Examples of this could include: involvement with RSC community activities, teaching or demonstrating, effective mentorship, service on boards, committees or panels, leadership in the scientific community, peer reviewing, promotion of diversity and inclusion, advocacy for chemistry, public engagement and outreach.

 

Previous winners

2023 – Miao Hong, Shanghai Institute of Organic Chemistry, China

2022 – Dominik Konkolewicz, Miami University, USA

2021 – Brett Fors, Cornell University, USA

2020 – Rachel O’Reilly, University of Birmingham, UK

2019 – Frederik Wurm, University of Twente, Netherlands

2018 – Cyrille Boyer, University of New South Wales, Australia

2017 – Julien Nicolas, Université Paris Sud, France

2016 – Feihe Huang, Zhejiang University, China

2015 – Richard Hoogenboom, Ghent University, Belgium

 

Nominations deadline: 31 January 2024

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Mintu Porel

Dr. Mintu Porel is an Associate Professor in the Department of Chemistry and Environmental Sciences and Sustainable Engineering Center, Indian Institute of Technology Palakkad, Kerala, India. After receiving her M.Sc. from Indian Institute of Technology Delhi, India, she joined University of Miami, Florida, USA for the Ph.D. program. She completed her Ph.D. on Organic Supramolecular Photochemistry in 2012. Thereafter, Dr. Porel moved to Columbia University, New York, USA for her first postdoctoral work and Cornell University, New York, USA for her second postdoctoral work. In September 2017, Dr. Porel joined the Department of Chemistry, Indian Institute of Technology Palakkad as an Assistant Professor. Her research work is focused on the design and synthesis of novel classes of tuneable organic macromolecules and their applications in material and biomedical sciences.

Read Mintu’s open access Emerging Investigator article, Water soluble non-conjugated fluorescent polymers: aggregation induced emission, solid-state fluorescence, and sensor array applications, DOI D3PY00357D.

 

Read our interview with Mintu below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Publishing in Polymer Chemistry has been a positive experience for us. The journal has a broad readership, which means that the published work can reach a wide audience of researchers and professionals in the field. Furthermore, Polymer Chemistry covers a wide range of topics within polymer science, so it is suitable for research across different aspects of polymer chemistry, including synthesis, characterization, properties and applications. This versatility makes it a suitable choice for publishing diverse interests within the polymer science and macromolecular chemistry.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

Our group is focussed on the design, synthesis, and applications of novel classes of organic macromolecules. In contrast to the small molecules, macromolecules have some unique properties that make them perfect fit for various applications which are otherwise challenging to meet. The immediate next goal is to get a hand on controlling the properties of the macromolecules which is crucial for making them an efficient candidate for a given application. The novelty of our system is that we can precisely control on how various functional groups are arranged in a macromolecule or polymer to produce its on-demand structure, characteristics, and function. Our team is ambitious to create a platform for the rapid and affordable synthesis of materials with tuneable properties for a wide range of applications, from material to biomedical research which is indeed a challenge.

In your opinion, what are the most important questions to be asked/answered in this field of research?

The most important question to be asked, in our opinion, is how polymers can be engineered for cutting-edge uses in applications like energy storage, packaging, biomaterials, and electronics, and how can the molecular weight, structure, and architecture of polymers be regulated.  Also, in order to satisfy various commercial and scientific demands, how can we create polymers with diverse functionalities, and understand its role in tuning properties at the macromolecular level and how that can be modulated to cater diverse applications in material and biomedical fields.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Regardless of the specific field, researchers should embrace a growth mindset and consider challenges as opportunities. Also, building a solid professional network is important and has big impact on your professional development and opportunities.

 

Find more about Mintu’s research on her lab’s website

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

We are very pleased to announce that Professor Rebekka S. Klausen has joined Polymer Chemistry as an Associate Editor

Prof. Rebekka S. Klausen carried out graduate studies in organic synthesis with Prof. Eric N. Jacobsen (Ph.D. 2011, Harvard University) and postdoctoral research in single molecule electronics with Prof. Colin Nuckolls (2011-2013, Columbia University). In 2013, she joined the Johns Hopkins University Department of Chemistry as an Assistant Professor and is now the Second Decade Society Associate Professor. Her research program has been recognized with awards including the ACS Award in Pure Chemistry (2021) and the ACS Macro Letters / Biomacromolecules / Macromolecules Young Investigator Award (2022). Rebekka’s research interests broadly encompass polymer synthesis, with unique contributions in the areas of the development of organometallic polymers of the main group, control of polymer tacticity, and the synthesis of functional materials inaccessible from traditional feedstocks. Read about more of Rebekka’s research on her lab website.

 

She has given her thoughts on future of the polymer chemistry field and the role of Polymer Chemistry:

Postpolymerization functionalization is an area where I see a lot of creative new directions. I’m excited about the potential for exploiting native functionalities in polymers for synthetic diversification. Another growth area is the “transformable monomer” concept, in which a monomer with privileged polymerization reactivity serves as a replacement for a more challenging monomer by way of postpolymerization transformation to another functional group, which allows access to polymers that are hard to make from traditional feedstocks. Postpolymerization functionalization is also going to grow as a central component in enabling sustainable polymers, whether through upcycling of post-consumer plastics or through chemical degradation. By joining the Polymer Chemistry editorial board, I hope to showcase the very best scientific research on these themes.

 

 

Professor Klausen’s favourite recent Polymer Chemistry articles

Professor Klausen has selected some recent publications in Polymer Chemistry that she has found particularly interesting or insightful. These articles are all free to read until 10 November 2023.

Photoinduced SET to access olefin-acrylate copolymers

John B. Garrison , Rhys W. Hughes , James B. Young and Brent S. Sumerlin

Polym. Chem, 2022, 13, 982-988

An electrochemical Hofmann rearrangement on acrylamide copolymers

Muzhao Wang and Paul Wilson.

Polym. Chem., 2023, 14, 3057-3062

Light-accelerated depolymerization catalyzed by Eosin Y

Valentina Bellotti, Kostas Parkatzidis, Hyun Suk Wang, Nethmi De Alwis Watuthanthrige, Matteo Orfano, Angelo Monguzzi, Nghia P. Truong, Roberto Simonutti and Athina Anastasaki

Polym. Chem., 2023, 14, 253-258

 

Read Professor Klausen’s Polymer Chemistry articles

RAFT Polymerization of an Aromatic Organoborane for Block Copolymer Synthesis

Sophia J. Melvin, Braden A. Mediavilla, Em G. Ambrosius, Qifeng Jiang, Fan Fang, Yuyang Ji, Tushita Mukhopadhyaya, Howard E. Katz and Rebekka S. Klausen

Polym. Chem., 2023, Advanced Article

Effect of polycyclosilane microstructure on thermal properties

Qifeng Jiang, Sydnee Wong & Rebekka S. Klausen
Polym. Chem.
, 2021, 12, 4785-4794

Metallocene influence on poly(cyclosilane) structure and properties

Carlton P. Folster & Rebekka S. Klausen
Polym. Chem.
, 2018, 9, 1938-1941

 

All the highlighted articles are currently FREE to read until 10 November 2023!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Sankarasekaran Shanmugaraju

Sankarasekaran Shanmugaraju is an Associate Professor of Chemistry at the Indian Institute of Technology Palakkad (IITPKD), Kerala, India. He received his Ph.D. degree in 2013 with a gold medal for the best Ph.D. thesis in Inorganic Chemistry from the Indian Institute of Science (IISc), Bengaluru. He then moved to Trinity College Dublin, Ireland as an Irish Research Council (IRC) Postdoctoral Fellow. In October 2018, he commenced his independent position as an Assistant Professor of Chemistry at IITPKD. The main objective of his group’s current research activities is “the rational design and synthesis of novel structures, smart materials, and functional porous polymers for applications in sustainable energy, environment, and biomedicine”.

 

Read Sankarasekaran’s open access Emerging Investigator article Tröger’s base-containing fluorenone organic polymer for discriminative fluorescence sensing of sulfamethazine antibiotic at ppb level in the water medium, DOI D3PY00857F.

 

Check out our interview with Sankarasekaran below. 

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry is a wonderful platform to showcase research from polymer and macromolecular chemistry. My experience so far has been very pleasant working with Polymer Chemistry. The review process was smooth and the editorial team was very helpful during our paper submission.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

We are interested in the design and synthesis of functional organic and hybrid polymers for applications in fluorescence-based sensing and adsorptive removal of environmental pollutants and contaminants. The most exciting thing about our work is the easy design and facial modulation of the functional properties of polymers. The synthesis of targeted polymer with desired properties and superior materials properties is often challenging. 

In your opinion, what are the most important questions to be asked/answered in this field of research?

The most important question to be asked in this field is how the structure, texture, and functional properties of polymeric materials can be tuned toward real-world applications. How can the sensing and adsorption properties can be modulated to develop efficient molecular adsorbents?

Can you share one piece of career-related advice or wisdom with other early career scientists?

Identify unique research problems and explore them. The field of polymer chemistry has limitless opportunities to unveil.

 

Find out more about Sankarasekaran’s research on his faculty webpage

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Leena Nebhani

Leena studied Chemistry at the University of Rajasthan and Polymer Science & Technology at the Indian Institute of Technology Delhi, India. She completed a PhD in Polymer Chemistry in 2010 from the Karlsruhe Institute of Technology (KIT), Germany. She has received several awards and scholarships during her studies, including a DAAD scholarship to undertake a Master thesis at the Technical University Dresden, Germany, and a Faculty of Engineering Scholarship from the University of New South Wales, Sydney, Australia. After the completion of her PhD, she worked as a Senior Scientist from 2011 till 2015 at the Goodyear Tire & Rubber Company, USA. In 2015, Leena joined the Indian Institute of Technology Delhi (IITD) as an Assistant Professor where she has been promoted to Associate Professor in 2020. She received a Faculty Research Award in the Early Career Category (2020) from Indian Institute of Technology Delhi for her contributions in functionalized porous materials. She has served as an Academic Editor at PLOS One since August 2018. She is an expert committee member in several panels at the Department of Science and Engineering, India as well as served as a reviewer for several international peer-reviewed high impact journals, for example, ACS Sustainable Chemistry & Engineering, Polymer Chemistry, Journal of Materials Chemistry B, etc. Since she joined IITD, she has been a frequent visiting academic at Australian Universities, including University of New South Wales and University of Sydney. She has been collaborating with eminent researchers based in India, USA, Germany, Australia, and Taiwan.

 

Read Leena’s Emerging Investigator article Polymer grafting on nitrone functionalized green silica via “grafting from” and “grafting to” approaches through enhanced spin capturing polymerization and a 1,3-dipolar cycloaddition reaction, DOI D3PY00712J.

 

Check out our interview with Leena below:

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry is one of the premier journals to publish research work directed towards polymer synthesis, its mechanism and application. For the currently published manuscript, Polymer Chemistry was my first choice for submission and we are grateful to the Editor and reviewers for finding the work suitable for publication in Polymer Chemistry. I am very lucky to have hard a working graduate student like Lukkumanul Hakkim N. This is the first Polymer Chemistry publication from my group, Surface and Macromolecular Chemistry Laboratory, and we are wishing for many more.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

The most exciting and challenging part of my research is to design scalable hybrid materials through the combination of nanomaterials and polymers for a wide variety of applications.

Can you share one piece of career-related advice or wisdom with other early career scientists?

If you really want something, be patient and work towards it. I have waited 13 years to get my first Polymer Chemistry publication, which was a dream since I was a graduate student when the Polymer Chemistry journal was launched in 2010.

 

Find out my about Leena’s research on her lab’s web page or follow her on LinkedIn or twitter @Nebhani_IITD.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2023 Polymer Chemistry Lectureship awarded to Professor Miao Hong

We are delighted to announce Professor Miao Hong (Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences) as the recipient of the 2023 Polymer Chemistry lectureship.

 

This award, now in its ninth year, honours an early-career researcher who has made significant contribution to the polymer field. The recipient is selected by the Polymer Chemistry Editorial Board from a list of candidates nominated by the community.

 

Profile picture of Professor Miao Hong  

 

 ‘What impressed me most about Polymer Chemistry is that the manuscripts are being professionally handled with high efficiency.’

 

 

Miao Hong received her Ph.D. degree in 2013 under the supervision of Professor Yuesheng Li from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. After a four-year postdoctoral stint at Colorado State University with Professor Eugene Y.-X. Chen, she joined Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences in 2017 as a Full Professor of Chemistry. Research in the Hong group is centred on polymer science, catalytic chemistry, green and sustainable chemistry, and with one of the main interests being the development of novel catalysts and new methodologies for the production of sustainable polymers with controlled structures from renewable feedstocks.

 

To learn more about Professor Hong’s research, have a look at her most recent publication in Polymer ChemistryInsights into the interaction between bis(aryloxide)alkylaluminium and N-heterocyclic carbene: from an abnormal Lewis adduct to a frustrated Lewis pair for efficient polymerizations of biomass-derived acrylic monomers

This is free to access until 30th September 2023, and featured in our most recent Pioneering Investigators collection. You can also check out articles from our previous lectureship winners in our lectureship winners collection.

 

Read our interview with Professor Hong below:

 

How has your research evolved from your first article to you most recent article?

The research in my group is centered on the development of novel catalysts and new methodologies for the production of sustainable polymers with controlled structures from renewable feedstocks. One of major challenges encountered in this area is the conventional catalytic systems, which can effectively polymerize petrochemical monomers, are generally inert/sluggish or uncontrolled toward the polymerization of biomass-derived monomers due to their unique heteroatom-rich structure natures. Take β-angelica lactone as an example, a key downstream chemical of levulinic acid which is available in a total yield of more than 80% from cellulose and classified as one of top biomass-derived compounds best suited to replace petroleum-derived chemicals. However, its polymerization is inaccessible by traditional polymerization methods, such as group transfer, coordination-addition, and radical polymerizations.

 

The first “real” article in my group, accomplished by my first Ph.D. student, is the achievement of the first polymerization of β-angelica lactone through developing a new cooperative Lewis pair catalyst. Accordingly, a heat- and solvent-resistant acrylic bioplastic is effectively synthesized. This work was published in Angew. Chem. Int. Ed. (2020, 59, 2664) and designed as a Hot Paper. On the basis of this work, we further optimized the catalyst structure and established a new and stable Frustrated Lewis pair in our very recently work (Polym. Chem. 2023, 14, 3286 – 3293), which is not only efficient for β-angelica lactone polymerization, but also can mediate fast and controlled polymerizations of methyl crotonate and (E,E)-methyl sorbate, thus establishing a general catalyst for the polymerizations of inert biomass-derived acrylic monomers. Overall, the striking findings from our group and the other groups (e.g. Chen, Zhang, Takasu) shed light on the great potential of cooperative Lewis pair catalysts for efficient polymerizations of challenging biomass-derived monomers.

 

What excites you most about your area of research and what has been the most exciting moment of your career so far?

The most exciting moment of my research career so far should be the successful chemical synthesis of high-molecular-weight biomaterial poly(4-hydroxybutyrate) for the first time via ring-opening polymerization (ROP) of γ-butyrolactone (Nat. Chem. 2016, 8, 42), a biomass-derived lactone monomer commonly referred as “non-polymerizable” in the textbooks and literatures due to low ring strain energy, when I was a Postdoc in Prof. Eugene Y.-X. Chen’ group at Colorado State University. However, such ROP requires extremely low reaction temperature, which severely hampers the possibly industrial applicability of the resultant polymer.

 

Recently, my group established a new polymerization strategy, termed isomerization-driven ROP (iROP). Different from conventionally ring strain-driven ROP, such polymerization is thermodynamically driven by S/O isomerization, thus rendering non-strained five-membered rings highly polymerizable for the first time at industrially relevant temperature of 80-100 °C. I am quite excited about iROP, because it is a simple and powerful strategy which not only can circumvent the unfavorable thermodynamics of ROPs of ‘non-stained’ five-membered lactones, and also presents a fascinating opportunity to convert these abundant, but underexploited renewable feedstocks (e.g. γ-butyrolactone, γ-valerolactone, peach lactone, dihydrojasmone lactone, whiskey lactone) into new sustainable polymers with their key physical properties comparing well to representative commodity polyolefin plastics (Nat. Chem. 2022, 14, 294; Angew. Chem. Int. Ed. 2023, 62, e202217812).

 

In your opinion, what are the most important questions to be asked/answered in your field of research?

One of the most important questions in the field of sustainable polymers should be how to reshape the current petroleum-based polymer industry with sustainable polymers.  That is how to bring the beautiful synthetic schemes and intriguing physical properties of sustainable polymers developed in academia into industrial processes and cost-effective polymeric products. To address this question, cross-disciplinary research (such as polymer chemistry, physics, processing, engineering, and even information technology and artificial intelligence) is highly desirable, and the collaboration between both polymer industry and academic researchers is also essential.

 

How do you feel about Polymer Chemistry as a place to publish research on this topic?

What impressed me most about Polymer Chemistry is that the manuscripts are being professionally handled with high efficiency. Take our recent research article published by Polymer Chemistry as an example. The manuscript was submitted on 17th May 2023, the peer review of which only took two weeks, and accepted fast on13th June 2023.

 

In which upcoming conferences or events (online or in person) may our readers meet you?

The conferences on my schedule are the National Polymer Academic Paper Conference (Oct. 13-17, 2023, Wuhan, China) and IUPAC MACRO 2024 (July 1-4, 2024, Warwick University, United Kingdom).

 

Can you share one piece of career-related advice or wisdom with early career scientists?

You always can find ideas/answers in the literatures when you face the scientific questions.

 

How do you spend your spare time?

Try my best to accompany my family in my spare time. I always feel frustrated to balance work and life.

 

We would like to thank everybody who nominated a candidate for the 2023 Polymer Chemistry Lectureship. The Editorial Board had a very difficult task in choosing a winner from the many excellent and worthy candidates.

 

Please join us in congratulating Professor Hong on winning this award!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Maxwell J. Robb

A photo of Max Robb.
Max was born and raised in Colorado and obtained his B.S. in Chemistry from the Colorado School of Mines where he began research in synthetic polymer chemistry under the guidance of Prof. Daniel M. Knauss. After graduating in 2009, Max carried out his Ph.D. studies in the laboratories of Prof. Craig J. Hawker at the University of California, Santa Barbara.  His doctoral research focused broadly on the synthesis of functional organic materials and was recognized by the American Chemical Society with the 2016 Henkel Award for Outstanding Graduate Research in Polymer Chemistry. Max conducted postdoctoral work with Prof. Jeffrey S. Moore at the University of Illinois, Urbana-Champaign as a Beckman Institute Postdoctoral Fellow prior to joining the Division of Chemistry and Chemical Engineering at Caltech as an Assistant Professor of Chemistry in September 2017.  Research in the Robb group seeks to advance the fundamental understanding of mechanical force transduction at the molecular level and develop strategies to create force-responsive molecules and functional materials. The group’s research has been recognized by a number of awards including the Beckman Young Investigator award, Sloan Research Fellowship, NSF CAREER award, Camille Dreyfus Teacher-Scholar award, Rose Hills Foundation Innovator Award, and the PMSE Young Investigator award.

 

Read Max’s Emerging Investigator Series article, Mechanochemical reactivity of a multimodal 2H-bis-naphthopyran mechanophore, DOI: D3PY00344B.

 

Check out Max’s thoughts on the future directions for his field of research below:

 

In your opinion, what are the most important questions to be asked/answered in this field of research?

The ability to design polymers that distinguish between different stress states through discrete visual cues will enable new opportunities for stress sensing. However, this type of behavior is still relatively rare in soft materials.  

 

Keep with Max’s research and the latest news from his lab by following him on twitter @maxwell_robb and @therobbgroup, or check out his lab’s website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)