Author Archive

Paper of the month: Block copolymer synthesis in one shot: concurrent metal-free ATRP and ROP processes under sunlight

Block copolymers are of a great interest to the polymer chemistry community as they provide intermediate physicochemical properties when compared to the respective homopolymers. Sequential monomer addition, mechanistic transformation and coupling of different segments are three of the most popular approaches to obtain block copolymers. However, all these approaches suffer from several drawbacks such as being limited to monomers that can be polymerized only under the same polymerization mechanism or requiring extreme experimental precautions and elongated purification steps.



In order to address the latter challenge, Yagci, Yilmaz and co-workers developed the first metal free example of block copolymer formation in which they concurrently polymerize structurally different monomers from a junction point serving as two functional groups for each polymerization. Since atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) are not expected to interfere with each other and as such could be the ideal candidates for such a system. In order to test this hypothesis, a specifically designed initiator was synthesized possessing a tertiary bromine at one end (capable of initiating an ATRP reaction) and a hydroxyl functionality at the other end (capable for initiating a ROP reaction). Under carefully optimized conditions and in the presence of both the ATRP and ROP catalysts both methyl methacrylate (MMA) and ε- caprolactone could be simultaneously polymerized yielding a diblock copolymer with good agreement between theoretical and experimental value sand low dispersity values. Interestingly, the reaction took place on the roof of the chemistry department at Istanbul technical university utilizing natural sunlight as the light source. The applicability of this technique was further demonstrated by the simultaneous polymerization of different sets of monomers including n butyl acrylate- ε- caprolactone and methyl methacrylate-lactide combinations. As such, the successful combination of ATRP with ROP in the same reaction media allows for the facile one pot synthesis of block copolymers which can find use in further applications where excess of metals or inorganic residues would be undesirable.

Tips/comments directly from the authors:

1. All chemicals should be added into the reaction tube under nitrogen atmosphere in dark (perhaps by covering the outside of the tube with an aluminium foil) to avoid any premature light induced polymerization.
2. ROP polymerization can take place even in dark. Therefore, the ROP catalyst should be added last, and afterwards, the reaction tube should be exposed to sunlight as soon as possible. This way, one can provide the optimum conditions for the polymerizations to be realized simultaneously.
3. The method is best applicable in sunny days. Sunlight was deliberately selected as the most natural and simple way of light exposure. However, various other irradiation sources that emit in the wavelength regions matching with the absorption of appropriate sensitizers can also be used.

Read this exciting research for free until 17/07/2017 through a registered RSC account.

 

Block copolymer synthesis in one shot: concurrent metal-free ATRP and ROP processes under sunlight
Polym. Chem., 2017, 8, 2899-2903, DOI: 10.1039/c7py00069c

 

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently a Global Marie Curie Fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please visit this website for more

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Mild and efficient synthesis of ω,ω-heterodifunctionalized polymers and polymer bioconjugates

 

The versatile and high yielding modification of polymer end groups is a critical tool for controlling materials properties. However, when multiple different functionalities are needed, pre-installation of two different functional groups at the polymer end groups is typically a tedious requirement. Sumerlin, Castellano and co-workers managed to circumvent this by developing a mild approach that enables the efficient synthesis of ω-ω-heterodifunctionalized polymers and polymer bioconjugates. Key to this strategy is the use of the recently introduced reagent benzotrifuranone (BTF) which allows the introduction of differentially “clickable” functional groups to monomethyl ether poly(ethylene glycol) amine (mPEG amine). In contrast to conventional polymer heterofunctionalization approaches that require high temperatures, significant excess of reagents and numerous synthetic steps, BTF serves as an ideal functionalization handle that operates at ambient temperature using near-stoichiometric amounts of reagents. Importantly, following functionalization of BTF with alkyne and alkene functional groups a fluorescent (coumarin) dye and biotin could be successfully conjugated to the end of mPEG-amine. These polymer bioconjugates were then able to bind avidin while showing an unexpected disruption of avidin tetramer formation. Overall, the compatibility of BTF with a broad scope of amine nucleophiles and thermally sensitive moieties (e.g. proteins) in combination with the highly efficient and mild nature of this reagent holds great promise for more elaborate heterofunctionalization strategies.

 

 

Tips/comments directly from the authors:

 

  1. The reaction time of the first and second addition to BTF should be monitored (typically by thin layer chromatography) to ensure minimal over/under functionalization occurs.
  2. The trisubstitution products are tolerant to many reaction conditions; however, when performing reactions that include radical intermediates, higher than usual reagent equivalents may be needed due to the radical scavenging nature of the phloroglucinol
  3. When one-pot homodifunctionalizations are performed, be sure to add enough nucleophile to consume both electrophilic sites on the polymer end group and the three electrophilic sites on any unreacted BTF.
  4. Regarding BTF synthesis: 1) Using fresh polyphosphoric acid and monitoring the reaction temperature is very important for the ring-closing in the last step of the synthesis, and 2) BTF and the mono- and difuranone derivatives are sensitive to silica gel, so avoid letting the compounds reside in a column too long during purification.

 

Read this exciting research for free until 21/06/2017 through a registered RSC account.

 

Mild and efficient synthesis of ω,ω-heterodifunctionalized polymers and polymer bioconjugates
Polym. Chem., 2017,8, 2457-2461, DOI: 10.1039/C7PY00225D

 

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently a Global Marie Curie Fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please visit this website for more

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Novel alkoxyamines for the successful controlled polymerization of styrene and methacrylates

Reversible addition-fragmentation chain transfer polymerization (RAFT) and transition metal-mediated radical polymerization (TMM-RDRP) are two widely used techniques employed for the preparation of controlled polymeric architectures. However, both of them exhibit significant colouring and complete purification of the final materials is challenging. On the other hand, nitroxide mediated polymerization (NMP) requires no or minimal purification although designing alkoxyamines that can facilitate the controlled polymerization of both styrene and methacrylates is a challenge. In this contribution, Asua and co-workers employed three different alkoxyamines to study the homopolymerization of styrene and its chain extension with methacrylates. Upon careful evaluation of the reaction kinetics as well as variation of the polymerization temperature, high monomer conversions with uncompromised end group fidelity could be achieved. A wide range of molecular weights were targeted in order to identify the limitations of the system. It was found that for targeted degrees of polymerization beyond 333, there was an increased difference between theoretical and experimental molecular weights, due to the thermal initiation of styrene. In addition, the nature of the substituents in the nitroxide adduct was also found to be crucial for the controlled polymerization of styrene with bulkier adducts providing more extensive control. The retention of the reactive alkoxyamine chain end was further confirmed via nuclear magnetic resonance (NMR) and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-ToF-MS). Well-defined PS-b-PBMA and PMMA-b-PS block copolymers were also successfully prepared highlighting these classes of alkoxyamines as a versatile mediator for the controlled polymerization of both methacrylates and styrene.

 

 

Tips/comments directly from the authors:

  1. It is important to monitor the temperature throughout the polymerisation in order to ensure optimum kinetics.

 

  1. The appropriate temperature should be employed for methacylates (< 100 °C) and styrene (> 110 °C). For instance, this can influence the final molar mass distributions of a block copolymer. The preparation of a poly(methyl methacrylate) macro-alkoxyamine first, followed by the chain extension with styrene provides a PMMA-b-PS block copolymer with moderate MMD. However, the preparation of the PS block first would yield a block copolymer with high dispersity value due, in part, to the high temperatures employed.

 

  1. Several matrix/salt combinations should be tested when conducting MALDI-ToF MS analysis. The reactive chain ends might not be observed with some matrixes, such as trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB).

 

 

Read this exciting research for free until 16/05/2017 through a registered RSC account:

 

Novel alkoxyamines for the successful controlled polymerization of styrene and methacrylates
Polym. Chem., 2017,8, 1728-1736, DOI: 10.1039/c6py02190e

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently a Global Marie Curie Fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please visit this website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Vesicles of double hydrophilic pullulan and poly(acrylamide) block copolymers: a combination of synthetic- and bio-derived blocks

Willersinn et al. report the synthesis of double hydrophilic pullulan and poly(acrylamide) block copolymers.

Double hydrophilic block copolymers (DHBC) self-assemble to various structures in aqueous solutions due to a strong difference in hydrophilicity. This is in contrast to amphiphilic block copolymers that self-assemble due to the insolubility of the hydrophobic block in water. In their recent contribution, Schmidt and co-workers were able to extend the principle of double hydrophilic self-assembly to novel polysaccharide-polyacrylamide block copolymers namely pullulan-b-poly(N,N-dimethylacrylamide) (Pull-b-PDMA) and pullulan-b-poly(N-ethylacrylamide) (Pull-b-PEA). The bio-derived pullulan block was obtained via acid catalyzed depolymerisation, while the polyacrylamide homopolymer blocks were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization. Subsequently the blocks were conjugated via copper catalyzed azide alkyne cycloaddition (CuAAC). The presence of formed vesicular structures was investigated via cryogenic electron microscopy (cryo SEM), static light scattering (SLS) and dynamic light scattering (DLS) measurements showing diameters in the range of 200 to 500 nm. Finally, laser confocal scanning microscopy (LSCM) was employed using Rhodamine B staining or Rhodamine B labelled block copolymers to image the formed particle structures. These novel vesicular structures may find use in a wide range of applications including drug delivery.


Tips/comments directly from the authors:

1. The synthesis of block copolymers via CuAAc can be significantly simplified via the utilization of azide functionalized resins. As described in the paper the alkyne functionalized building block is utilized in excess. The resin is added after sufficient reaction time directly to the reaction mixture to react with residual alkyne end functionalized polymer and finally the resin is easily removed via filtration after the reaction. Therefore, no optimization of equivalents or absolute molecular weight data is needed to obtain a pure product without homopolymer contamination.
2. The choice of blocks is crucial for DHBC self-assembly in water. The blocks have to feature a significant difference in hydrophilicity. Moreover, high polymer concentrations are needed to obtain self-assembled structures.
3. For a pure DHBC self-assembly the utilized blocks should not feature LCST or other stimulus responsive behaviour that alters the solubility of the individual blocks. Otherwise the self-assembly might be driven via hydrophobic interactions as with an amphiphilic block copolymer.

Read this exciting research for free until 16/04/2017 through a registered RSC account:

Vesicles of double hydrophilic pullulan and poly(acrylamide) block copolymers: a combination of synthetic- and bio-derived blocks
Polym. Chem., 2017,8, 1244-1254, DOI: 10.1039/c6py02212j

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently a Global Marie Curie Fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please visit this website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Probing the causes of thermal hysteresis using tunable Nagg micelles with linear and brush-like thermoresponsive coronas

Blackman et al. report the synthesis of thermoresponsive polymers with tunable aggregation numbers in order to study the causes of thermal hysteresis.

 

Thermoresponsive polymers are materials that exhibit a change in their solubility over a temperature range. Thanks to this unique characteristic, these polymers can be used as smart and switchable materials for a wide range of biomedical applications. However, the cloud points upon cooling and heating a thermoresponsive polymer do not coincide because the process of equilibration takes time. The temperature interval between the cloud points upon cooling and heating is called hysteresis and the reversibility of these polymer’s thermal transitions can be influenced by many factors. In order to shine a light to these factors, O’Reilly, Gibson and Blackman synthesized well-defined, responsive amphiphilic block copolymers containing four different thermoresponsive corona blocks and assembled them in micellar structures in aqueous media. All micelles were designed to have tunable aggregation number enabling the study of the effects of altering the corona chemistry, chain confinement and core hydrophobicity on the thermoresponsive behavior, specifically the degree of hysteresis. It was found that higher core hydrophobicities were associated with a higher degree of hysteresis due to differences in core hydration. Linear corona chains capable of forming polymer-polymer hydrogen bonding interactions (e.g. pNIPAM) showed a greater hysteresis than those that could not (pDEAm). Importantly, the authors demonstrates that polymers with a brush-like architecture (pDEGMA and pOEGMA) exhibit irreversible phase transitions at a critical chain density, owing to irreversible nanoscale rearrangement in the precipitated bulk. These findings offer a deeper and more comprehensive understanding of stimuli-responsive self-assemblies and further highlight the complexity of hysteresis in thermoresponsive polymer systems.

 

Tips/comments directly from the authors:

1. It is important to use a Peltier system fitted with a reference cell with an internal temperature probe in order to accurately measure the hysteresis in the cooling curve. We have found that those without this feature typically over-estimate the hysteresis by a few degrees.
2. When synthesizing the pOEGMA-containing diblock copolymers, careful consideration of the RAFT CTA was necessary; the use of 2-Cyano-2-propyl dodecyl trithiocarbonate, as was employed for pDEGMA-containing diblock copolymers, resulted in a significant amount of high molecular weight polymers in the molecular weight distribution. Additionally, lower conversions had to be employed in order to reduce the presence of such species.
3. It was also important to employ multiple angle light scattering coupled with an algorithm such as REPES, which could enable us to investigate the molecular weights of the major fast mode and filter out scattering from spurious slow modes typically found in thermoresponsive polymer systems attributed to non-Brownian interactive behavior.

 

Read this paper for free until March 14th

Probing the causes of thermal hysteresis using tunable Nagg micelles with linear and brush-like thermoresponsive coronas
Polym. Chem., 2017, 8, 233-244.
DOI: 10.1039/C6PY01191H


About the Webwriter:Athina Anastasaki

Dr. Athina Anastasaki is a Web Writer for Polymer Chemistry. She is currently a Global Marie Curie Fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please, visit her website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Synthesis of microcapsules using inverse emulsion periphery RAFT polymerization via SPG membrane emulsification

Ishizuka et al. report the synthesis of polymeric microcapsules with a hydrophilic core using SPG membrane emulsification.

Polymeric nano/micro capsules can be used in many applications ranging from biomedicine to cosmetics, food industry and water treatment. However, the current approaches to prepare hollow particles possess a number of drawbacks including tedious and multistep synthesis and low encapsulation efficiency. In order to address these limitations, Zetterlund, Stenzel and co-workers have elegantly combined inverse emulsion periphery reversible addition-fragmentation chain transfer polymerization (RAFT) polymerization (IEPP) with shirasu porous glass membrane (SPG) emulsification to synthesize hollow particles with a hydrophilic core. An amphiphilic macroRAFT agent, namely poly(di (ethylene glycol)methyl ether methacrylate)17-block-poly (methyl methacrylate), was employed to prepare inverse emulsions with a relatively narrow size distribution. Adjusting the SPG membrane pore size from 0.2 to 3 μm allowed access to good control over the droplet size and subsequently the size of the final capsules. This is a significant improvement over conventional emulsions based techniques (e.g. (mini)emulsion or suspension systems) which typically generate either smaller or larger particles. Importantly, the synthesized emulsions were stable at room temperature for over a month maintaining their size and size distribution post polymerization. Finally, the authors demonstrated the successful encapsulation of a water soluble fluorescent dye without any significant effect on the droplet/microcapsule diameter. Therefore, this process showed great potential and can be applied to a wide range of droplets, enabling the encapsulation of various molecules in nano/micro capsules.


Tips/comments directly from the authors:

1. It is important to use a “hydrophobic membrane” to prepare inverse emulsions. Membranes are reusable after cleaning. Typically after each experiment, the membrane is first washed with THF to remove polymer, then with water to remove salt/water soluble guest molecules, subsequently with THF and finally with toluene at least three times to make sure the membrane is wetted with toluene.
2. In order to prepare monodisperse droplets, the continuous phase has to be stirred gently (in this study 160-170 rpm) during emulsification to create a flow which induces the detachment of droplets from the membrane surface and to prevent creaming (generated droplets would settle down without stirring). The stirring speed may differ depending on the specific emulsification condition.
3. During the crosslinking polymerization, a higher stirring rate (500-600 rpm) is typically required to prevent aggregation of particles. The optimum stirring rate may differ depending on the size of the reaction vessel and/or volume of the reaction mixture.

Read this exciting research for free until 25/02/2017 through a registered RSC account:

Synthesis of microcapsules using inverse emulsion periphery RAFT polymerization via SPG membrane emulsification
Polym. Chem., 2016, 7, 7047-7051, DOI: 10.1039/c6py01584k

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently an Elings fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please visit this website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: SET-LRP of acrylates catalyzed by a 1 penny copper coin

Aksakal et al. report the Cu(0)-mediated living radical polymerization of acrylates using a British penny coin.

Cu(0)-mediated living radical polymerization, typically referred to as single electron transfer living radical polymerization (SET-LRP), is a versatile tool for the synthesis of advanced materials. The groups of Becer and Resmini have further highlighted this versatility by reporting the SET-LRP of acrylates catalyzed by a penny copper coin. Impressively, a wide range of hydrophobic and hydrophilic monomers were successfully polymerized yielding well-defined polymers with low dispersities, near-quantitative conversions and high end group functionality. The scope of the system was subsequently expanded to include the synthesis of star polymers through the core first approach. Interestingly, the authors used two type of coins, the first one (issued in 1971-1992) consisting of 97% of copper and the second one (issued after 1992) consisting of 6% of copper. Both coins exhibited near identical polymerization results. A series of polymerizations targeting different degrees of polymerization were also conducted, all proceeding with very good control over the molecular weight distributions. In comparison to traditional Cu(0)-wire systems, British penny coins have the additional advantage of prohibiting the induction period, which is typically observed for many SET-LRP reactions. Finally, the scalability of these polymerizations up to 50 gram scale was also successful and thus demonstrating an economic, efficient and easily accessible catalyst for SET-LRP of various acrylic monomers.


Tips/comments directly from the authors:

Comments:

In this study, we provide direct evidence that the traditionally used Cu(0)-wire can be replaced with a copper coin, regardless to its year of issue. To avoid any induction period, this method can be employed for the synthesis of well-defined polymers of acrylates with both linear and star shaped initiators.


Tips:

  1. Since the coins are usually contaminated due to prior circulation, we suggest for reproducibility purposes a quick rinse with a freshly prepared HCl before the polymerization.
  2. As mentioned in the manuscript, both penny coins issued before and after 1992 exhibit near identical polymerization results. However, the coins issued after 1992 consist of 94% steel and are magnetic. Due to this, it should be taken into account that the magnetic stirrer can occasionally spin out of its axis. Therefore, we suggest the use of narrow and long Schlenk tube to avoid any splashing of the polymerization mixture.
  3. Due to the reactivity of the polymerization mixture, samples for both NMR and GPC should be diluted immediately in order to avoid errors during kinetic sampling.
  4. The inhibitor of monomers can be easily removed by passing over a plug of basic aluminium oxide. Due to the high viscosity of the OEGA480 monomer, larger volumes can be diluted in a volatile solvent to decrease viscosity. Evaporation of the solvent will provide the inhibitor-free monomer.

Read this exciting research for free until 25/11/2016 through a registered RSC account:

SET-LRP of acrylates catalyzed by a 1 penny copper coin
R. Aksakal, M. Resmini and C.R. Becer
Polym. Chem.
, 2016, 7, 6564-6569
DOI: 10.1039/C6PY01295G

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently an Elings fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please visit this website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Regioselective cross metathesis for block and heterotelechelic polymer synthesis

Radlauer et al. report the regioregularity of ring-opening metathesis polymerization and cross metathesis reactions for the synthesis of block and heterotelechelic materials.

Among the two distinct olefin metathesis polymerization methods, namely acyclic diene metathesis (ADMET) polymerization and ring opening metathesis polymerization (ROMP), ROMP possesses the advantage of proceeding by a chain growth mechanism and has been demonstrated to deliver polymers with an R substituent every 8 carbons from 3-substituted cyclooctene (3RCOE) monomers. Although secondary metathesis such as cross metathesis (CM) can occur between chains during ROMP, when the selectivity of 3RCOE monomers was examined, no studies on the CM were conducted. Towards this direction, Hillmyer and co-workers determined the CM of 3RCOE derivatives to be both regio- and stereoselective, making only a small fraction of t-TT and t-HH errors. As only a marginal increase in errors over time was observed, it was concluded that the system reached an equilibrium between the formation and fixing of errors. This stereo- and regioselectivity can be extended by combining polymers with different degrees of polymerization, or by combining polymers with different R substituents leading to the formation of multiblock or statistical copolymers depending on how long the CM is allowed to proceed. In the latter case, differential scanning calorimetry (DSC) confirms the transition from two Tgs to one Tg corresponding to a multiblock and a statistical copolymer, respectively. Additionally, the location of end groups from an asymmetric chain transfer agent can be controlled, thus allowing access to predominantly heterotelechelic oligomers or polymers despite the CM reactions that can occur between the chains.

Tips/comments directly from the authors:

  1. In our experience if a polymer turned brown, it was generally caused by the presence of deactivated Grubbs catalyst. To remove this contaminant at the end of the polymerization, the polymer was dissolved in chloroform and stirred with carbon black. Subsequent filtration and reprecipitation of the polymer generally yielded clear and colorless materials.
  2. To obtain SEC data that was more easily interpreted, we used adjusted ratios of the polymers of different degrees of polymerization in the polymer-polymer cross metathesis experiments. Though the 1:1 scenario still showed immediate CM to an average N, the resolution between the two peaks was quite poor.

Any experiment involving the acetal-containing chain transfer agent required that each reaction component be filtered over basic alumina to avoid deprotection of the acetal moiety.

Read this exciting research for free until 25/11/2016 through a registered RSC account:

Regioselective cross metathesis for block and heterotelechelic polymer synthesis
M.R. Radlauer, M.E. Matta and M.A. Hillmyer,
Polym. Chem., 2016, 7, 6269-6278,
DOI: 10.1039/C6PY01231K

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently an Elings fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please visit this website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Well-defined 4-arm hydroxy-terminated PE stars

Zhang et al. report in Polymer Chemistry the synthesis of well-defined polyethylene-b-polycaprolactone and polyethylene-b-polymethylmethacrylate star copolymers.

Star homo- and copolymers have always been the centre of attention thanks to their interesting solution and self-assembly properties in comparison to their linear counterparts. Among the available strategies of synthesizing star polymers, the “core first” approach is of significant importance although polyethylene-based (PE) stars via this method have been rarely reported. Towards this end, Hadjichristidis and co-workers have prepared a 4-arm OH-terminated polyethylene macroinitiator in three steps via cyclic hydroboration/polyhomologation/oxidation reactions.

The successful synthesis has been confirmed by both nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) analysis. The hydroxyl groups of the star macroinitiator were subsequently utilized to initiate the ring-opening polymerization (ROP) of ε-caprolactone with the GPC confirming a clear shift to higher molecular weights while retaining narrow molecular weight distributions.

In order to demonstrate the potential of this approach, the hydroxyl groups have also been esterified to yield eight initiating sites capable of enabling the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). Pleasingly, a monomodal distribution and a quantitative shift to higher molecular weights were observed by GPC, suggesting the efficiency of the reaction.

As such, this strategy revealed the compatibility of polyhomologation with other controlled/”living” polymerization techniques and thus allowing access to the synthesis of novel and well-defined materials.

Tips/comments directly from the authors:

  1. An excess of thexylborane should be used to ensure all divinyl groups are reacted (cyclic hydroboration), otherwise the tetrafunctional initiator will be contaminated with difunctional.
  2. Unreacted thexylborane should be quenched with methanol before the addition of ylide since it will initiate polyhomologation too towards linear PE.
  3. Temperature higher than 80 oC should be used for ROP and ATRP to ensure good solubility of polyethylene.



Read this exciting research for free until 30/10/2016 through a registered RSC account:

Well-defined 4-arm stars with hydroxy-terminated polyethylene, polyethylene-b-polycaprolactone and polyethylene-b-(polymethyl methacrylate)2 arms
Z. Zhang, Y. Gnanou and N. Hadjichristidis
Polym. Chem., 2016, 7, 5507-5511
DOI: 10.1039/C6PY01090C

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently an Elings fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please visit this website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Quantitative end-group functionalization of PNIPAM from aqueous SET-LRP via in situ reduction of Cu(II) with NaBH4

Gavrilov et al. report the quantitative and in situ functionalization of PNIPAM in aqueous media.

One major issue in aqueous copper mediated approaches is the hydrolysis of the halide end group which significantly compromises the end group fidelity of the resulting materials and therefore limits post polymerization modifications. In this current contribution, Monteiro and co-workers have carefully investigated the kinetics of hydrolysis of poly(N-isoproplyacrylamide) (PNIPAM) obtained via a new single electron transfer (SET) polymerization method to reduce Cu(II) directly and quantitatively to Cu(0). It was shown that the rate of hydrolysis is independent of the molecular weight of the polymer and the copper content in solution and reaches completion in approximately 15 hours.

In order to circumvent the hydrolysis issue, the authors elegantly conducted an in situ azidation of the bromine end group resulting in the quantitative transformation of the bromine end groups in a matter of 30 seconds, as indicated by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-ToF-MS). This is quite a remarkable achievement given that organic solvents facilitate the same process in much longer reactions times, ranging from 10 to 24 hours. The fast reaction rate can be attributed to the enhanced solubility of sodium azide in water and the greater ion pair separation that facilitates nucleophilic attack.

In an attempt to further confirm the data obtained by MALDI-ToF-MS, the azide terminated PNIPAM was subsequently coupled to alkyne functional polymers (after purification) with coupling efficiencies greater than 97%. Thus, it was demonstrated that this approach can not only overcome the hydrolysis issues but also allow rapid synthesis of functional materials.

Tips/comments directly from the authors:

  1. The method of addition of the reactants is important, and by varying the order of addition the polymerizations rates can vary.
  2. It is important to note that the NaBH4 is hygroscopic, and care should be taken to store it in a water-free environment as errors can arise from weighting wet reagents.
  3. We believe that quantitative information can be obtained from the molecular weight distribution using the SEC/LND-model. This is especially important when determining quantitative coupling information of end-groups at high polymer molecular weights, as conventional techniques such as NMR and MALDI-ToF lose sensitivity. We use the weight distribution (i.e. w(M)) as the total weight of the reactants and products remains constant over the reaction; thus, the area under the w(M) vs M curve is the same before and after the reaction.

Read this exciting research for free until 30/09/2016 through a registered RSC account:

Quantitative end-group functionalization of PNIPAM from aqueous SET-LRP via in situ reduction of Cu(II) with NaBH4
M. Gavrilov, Z. Jia,, V. Percec and M.J. Monteiro
Polym. Chem., 2016, 7, 4802-4809
DOI: 10.1039/C6PY00968A

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently an Elings fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)