Archive for September, 2022

Polymer Chemistry Emerging Investigator- Quentin Michaudel

Quentin Michaudel grew up in La Rochelle, France. He received his B.Sc. (2008) and M.Sc. (2010) from the École Normale Supérieure de Lyon. He earned his Ph.D. (2015) with Professor Phil S. Baran at The Scripps Research Institute, where he explored C–H functionalization methods and their applications to the synthesis of complex molecules. Quentin then accepted a postdoctoral position at Cornell University, where he developed photocontrolled polymerizations with Professor Brett P. Fors. In 2018, Quentin started his independent career as an assistant professor at Texas A&M University. His research group focuses on the development of synthetic methods and new organic materials. Quentin is the recipient of the 2022 ACS PMSE Young Investigator Award; the 2022 ACS Organic Division Academic Young Investigator’s Symposium; and the 2021 Thieme Chemistry Journals Award.

You can follow Quentin and his lab on Twitter @q_michaudel and @MichaudelLab

Read Quentin’s Emerging Investigator article, ‘Expedient synthesis and ring-opening metathesis polymerization of pyridinonorbornenes’

 

Check out our interview with Quentin below:

 

1. How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry is a great venue for synthetic studies focused on new polymeric architectures, as well as for reports of polymerizations relying on catalytic processes. It is a great place for the polymer community to share impactful results.

 

2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

I am very excited about my group’s ability to precisely synthesize polymers with high structural complexity and tailored properties. Our research requires the often-difficult characterization of novel polymers, as well as the investigation of intricate reaction mechanisms, but that challenge is exciting and motivates us to push the boundaries of the field.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Microfluidic-supported synthesis of anisotropic polyvinyl methacrylate nanoparticles via interfacial agents

Visaveliya et al. combine microfluidics with bulk batch synthesis to fabricate complex (non-spherical) anisotropic polyvinyl methacrylate (PVMA) nanoparticles (NPs) in a single step.

Τhe properties of polymer nanoparticles are dictated by both structure-property and structure-function relationships however, the importance of particle shape is generally overlooked due to the inherent difficulty to synthesize anisotropic nanoparticles in a single step. Anisotropic colloids are currently produced via multi-step synthesis platforms restrict scaling-up and evaluating as an alternative to the well-established spherical colloidal particles.

To address this issue, Eisele and collaborators developed a single-step, microfluidic-supported synthesis for anisotropic polyvinyl methacrylate (PVMA) nanoparticles that takes advantage of the homogeneous conditions given by microfluidics for the initial emulsification process and of the inhomogeneous conditions provided by bulk batch synthesis for the thermal polymerization. Α monomer with two active polymerization sites (vinyl methacrylate) was used and the impact of interfacial agents including a molecular surfactant (sodium dodecyl sulfate, SDS), anionic polyelectrolytes (poly(sodium 4-styrene sulfonate), PSSS and poly(4-styrene sulfonic acid) ammonium salt, PSSA), a cationic polyelectrolyte (poly(diallyldimethylammonium chloride), PDADMAC), and the non-ionic polymer (polyvinylpyrrolidone,PVP) on the shape and size of the produced nanoparticles was systematically evaluated. A direct effect of the identity and the concentration on the shape of the produced nanoparticles was observed and led to a plethora of structures varying from isotropic spherical structures (SDS) to anisotropic elongated (PSSS, PSSA) and flower-like structures (low PVP concentrations) or irregularly shaped assemblies (PDADMAC, high PVP concentrations).

In summary, this study provides a general framework to guide investigations on colloidal polymerization towards predicting nanoparticle shapes below the critical 200 nm regime.

 

Microfluidic-supported synthesis of anisotropic polyvinyl methacrylate nanoparticles via interfacial agents, Polym. Chem., 2022,13, 4625-4633

Link to the paper: https://pubs.rsc.org/en/content/articlelanding/2022/py/d1py01729b

 

Dr. Kelly Velonia is an Advisory Board Member and a Web Writer for Polymer Chemistry. She joined the Department of Materials Science and Technology in 2007. Research in her group focuses on the synthesis and applications of bioconjugates and biopolymers

You can follow Kelly on twitter @KellyVelonia


 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Emerging Investigator- Zachary Hudson

 

 

Zachary M. Hudson is an Associate Professor and Canada Research Chair in Sustainable Chemistry at the University of British Columbia. Zac completed his B.Sc. at Queen’s University in Kingston, Ontario. He remained at Queen’s to pursue a Ph.D. in Inorganic Chemistry under the supervision of Prof. Suning Wang, focusing on the development of luminescent materials for organic electronics. During his Ph.D. he also held graduate fellowships at Jilin University in China as well as Nagoya University in Japan. He then moved to the University of Bristol as a Marie Curie Postdoctoral Fellow with Prof. Ian Manners, followed by a second Postdoctoral Fellowship at the California Nanosystems Institute at the University of California, Santa Barbara with Prof. Craig Hawker. He joined the faculty at UBC in 2015, where he holds the Canada Research Chair in Sustainable Chemistry. He leads a research program in synthetic materials chemistry, studying topics ranging from solutions for energy-efficient displays and light sources to the self-assembly of electronic materials on the nanoscale. He was the recipient of the ACS Herman Mark Young Scholar Award and Polymer International-IUPAC Award in 2022.

Read Zachary’s Emerging Investigator article, ‘Donor modification of thermally activated delayed fluorescence photosensitizers for organocatalyzed atom transfer radical polymerization’

 

Check out our interview with Zachary below:

1. How do you feel about Polymer Chemistry as a place to publish research on this topic?

Polymer Chemistry is the perfect place to read about innovative techniques in polymer synthesis, and we’re excited to contribute an article with a photophysical twist.

 

2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

I’m very excited about our work on luminescent polymer dots, or Pdots – nanoparticles that can be bright enough to be detected with a handheld smartphone camera. We’re collaborating with my colleague Russ Algar at UBC to develop nanoparticles for biosensing using smartphones, and translating this to technology that could be used in a healthcare setting represents a major exciting challenge.

 

3. In your opinion, what are the most important questions to be asked/answered in this field of research?

Our current featured article uses organic photosensitizers as catalysts for controlled radical polymerization. In this space, we need to develop highly photostable sensitizers that can perform using visible light irradiation. This is a major challenge, because accessing suitably high-energy excited states using visible light is itself a contradictory requirement.

 

4. Can you share one piece of career-related advice or wisdom with other early career scientists?

I’m a big fan of ‘white space’ in my calendar – time in which nothing is booked, so I have the space to just read or think. The hectic lifestyle of early-career academia combined with our always-connected culture makes it hard to find time to just think about science – schedule it if you have to!

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Donor modification of thermally activated delayed fluorescence photosensitizers for organocatalyzed atom transfer radical polymerization

Polgar et al. use donor-modified thermally activated delayed fluorescence (TADF) emitters as photocatalysts for O-ATRP.

O-ATRP has emerged as an attractive alternative to conventional metal-catalyzed ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of the well-studied metal catalysts. Specifically, O-ATRP using thermally activated delayed fluorescence (TADF) emitters as photocatalysts takes advantage of the unique ability of TADFs to interconvert singlet and triplet excited states and has been more recently implemented in diverse fields including organic electronics, photocatalysis, biological imaging, and chemical sensing. TADF emitters mostly contain a twisted donor–π–acceptor (D–π–A) motif which results in a prolonged excited state lifetime and facilitates singlet and triplet energy and electron transfer. Nevertheless, the coexistence of both electron donors and acceptors in photoredox catalysis results in unwanted excited state side reactivity that limits initiator efficiency and might also deactivate the catalyst.

To address this issue, Hudson and collaborators use donor-modified TADF emitters as photocatalysts for O-ATRP. More specifically, TADF photosensitizers based on 9,10-dihydro-9,9-dimethylacridine/2,4,6-triphenylpyrimidine conjugates exhibiting strong visible absorption, large excited state reduction potentials, and long-lived triplet excited states were employed to evaluate catalyst structure–activity relationships. The stability of the radical cation was found to be determining for controlled polymerization, however, significant differences were observed among donor-modified catalysts which were also related to variation in the rates of photoinduced electron transfer (PET). Time-resolved photoluminescence studies of the catalysts supported initiation by electron transfer from both singlet and triplet states while, the functionalized donors possessed the higher driving forces for PET. Through this study, the donor-modified TADF photocatalyst PymDMDMA -bearing a methoxyphenyl substituent- was identified to yield methacrylic polymers with Đ below 1.3 at low catalyst loadings (50 ppm) while also being able to catalyze the controlled synthesis of block copolymers in contrast to the unmodified TADF.

This study explores the ability to design more efficient catalysts by merely altering the types of donors, acceptors and their derivatives and proposes that more efficient catalysts can be designed through theoretical modeling.

Tips/comments directly from the authors:

  • ppm-levels of catalyst are sufficient for the synthesis of polymers with well-defined size, composition, and topology by O-ATRP, potentially obviating the need for post-polymerization purification.
  • Donor-acceptor fluorophores can exhibit thermally activated delayed fluorescence (TADF), a phenomenon that prolongs the excited state lifetime. The ability to control the lifetime and excited-state reduction potential of TADF emitters makes them versatile photocatalysts for O-ATRP, particularly at low catalyst loadings.
  • A donor-modification strategy was used in this study to mitigate deleterious excited-state side-reactivity associated with the electron-rich donors used in TADF. Rational design of modifying groups can not only enhance the photostability of these dyes, but also provide an extra dimension of control over the excited state reduction potentials and rates of electron transfer in O-ATRP.

 

Donor modification of thermally activated delayed fluorescence photosensitizers for organocatalyzed atom transfer radical polymerization, Polym. Chem., 2022, 13, 3892-3903. 

 

Link to the paper: https://pubs.rsc.org/en/content/articlelanding/2022/py/d2py00470d

 

Dr. Kelly Velonia is an Advisory Board Member and a Web Writer for Polymer Chemistry. She joined the Department of Materials Science and Technology in 2007. Research in her group focuses on the synthesis and applications of bioconjugates and biopolymers.


 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)