In this article, Kamigaito and co-workers cationically polymerized (−)-β-pinene, a major constituent of pine tree oil, to generate a high-molecular-weight polymer that were subsequently hydrogenated via metal catalysts to give a high-performance, bio-based cycloolefin polymer with an alicyclic backbone. To obtain the high-molecular-weight polymer, the controlled/living cationic polymerization of (−)-β-pinene was investigated by an initiating system, consisting of a protonic acid, a Lewis acid, and an added base, along with an incremental monomer addition technique. These reactions could be performed even at relatively large scales to produce several hundred grams of the polymer, which can be then processed through injection-molding. The synthesized bio-based cycloolefin polymers demonstrated promising potential properties as high performance optical plastics with good processability, low density, high optical transparency, low birefringence, non-hygroscopicity, high mechanical strength, and excellent thermal properties.
Sustainable cycloolefin polymer from pine tree oil for optoelectronics material: living cationic polymerization of β-pinene and catalytic hydrogenation of high-molecular-weight hydrogenated poly(β-pinene) by Kotaro Satoh, Atsuhiro Nakahara, Kazunori Mukunoki, Hiroko Sugiyama, Hiromu Saito and Masami Kamigaito Polym. Chem. 2014, 5, 3222-3230.
Julien Nicolas is a web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.