Paper of the week: Dynamic supramolecular poly(isobutylene)s for self-healing materials

Polymers with self-healing or self-repairing properties have gained increasing importance in the past years, often relying on capsule-based concepts, mechanophores and supramolecular concepts. In all cases the basic concept of such materials relies on the use of crosslinking processes which enables repair of a mechanically induced damage by subsequent network-formation. Based on recent observations of hydrogen-bonded supramolecular poly(isobutylene)s (PIBs), where clustering effects were observed due to the interplay of supramolecular association and microphase separation between the polar hydrogen-bonding moieties and the non-polar PIB chains, the authors sought to systematically investigate the clustering and potential use of hydrogen-bonded PIBs for self-healing materials.

Graphical abstract: Dynamic supramolecular poly(isobutylene)s for self-healing materials

Mono- and bifunctional supramolecular PIBs bearing hydrogen-bonding motifs (barbituric acid or a Hamilton wedge) were prepared by a combination of living carbocationic polymerization (LCCP) and azide–alkyne ‘‘click’’ reactions to investigate their dynamics and self-healing behaviour. Temperature-dependent rheology in the melt revealed thermoreversible formation of supramolecular clusters. Stoichiometric mixing of the polymers by solution blending affected the extent of clustering by specifically interacting barbituric acid/Hamilton wedge moieties. Frequency-dependent measurements on bifunctional barbituric acid functionalized PIBs revealed a strong rubbery plateau and terminal flow, caused by the formation of dynamically bridged clusters. Small discs of these polymers showed self-healing at room temperature after being cut and brought into contact at the fractured surface.

Dynamic supramolecular poly(isobutylene)s for self-healing materials by Florian Herbst, Sebastian Seiffert and Wolfgang H. Binder, Polym. Chem., 2012, 3, 3084-3092.

To keep up-to-date with all the latest research, sign up for the journal’s e-alerts or RSS feeds or follow Polymer Chemistry on Twitter or Facebook.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)