Congratulations to the poster prize winners at the Cambridge Bioelectronics Symposium

Congratulations to the poster prize winners at the Cambridge Bioelectronics Symposium held on 1-3 July 2024 in Cambridge, UK. Ahmed Omara won the Journal of Materials Chemistry B award, while Joseph Asfouri won the Journal of Materials Chemistry C award.

Ahmed Omara, Leibniz Institute for Polymer Research Dresden

Presentation of poster prize certificate to Ahmed Omara

Poster title: Hydrogel-Functionalized Microelectrode Arrays (MEAs) for Multimodal Cell Stimulation

Biography: Ahmed Omara, originally from Egypt, holds a bachelor’s degree in mechanical engineering with a double concentration in material science and mechatronics, and a minor in economics from the American University in Cairo, graduating in 2015. He pursued an Erasmus Mundus master’s program in nanoscience and nanotechnology, spending the first year in Belgium and the second in Barcelona, Spain. Specializing in nanomaterials, he discovered a passion for biomaterials, hydrogels, tissue engineering, and electronics.

After his masters Ahmed returned to Egypt in 2021 where he worked as a lead scientist to create biodegradable plastics from natural sources at Sadko group of companies. Currently, he is pursuing a PhD at the Leibniz Institute for Polymer Research in Dresden, Germany, focusing on fabricating bioelectronic devices and functionalizing them with hydrogel for multimodal cell simulation at a single-cell resolution level.

 

Joseph Asfouri, University of Cambridge

Poster prize certificate presented to Joseph AsfouriPoster title: Towards a 3D, Flexible, Biohybrid Device for Cell Replacement Therapy for Parkinson’s Disease

Biography: Joseph is a master’s student in George Malliaras’ lab at the University of Cambridge. During his undergraduate years at Rice University, he studied electrical engineering and neuroscience while conducting research on magnetogenetic neural stimulation at Rice, deep brain stimulation for depression at Baylor College of Medicine, and brain-computer interfaces for motor prostheses at the University of Washington. At Cambridge, he designed a novel bioelectronic implant to enhance stem cell therapy for Parkinson’s disease. Along with his passion for neural engineering, his interests include science policy and commercialization to translate neurotechnology safely and efficiently from the lab to the clinic. This fall, Joseph will return to the US to start his PhD in the UC Berkeley-UCSF Joint Bioengineering Program.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open call for papers: 1D Fibrous Materials for Advanced Energy Storage and Conversion – A Materials Advances Themed Collection

Materials Advances is pleased to announce an open call for papers, for the upcoming themed collection:

 

1D Fibrous Materials for Advanced Energy Storage and Conversion

Guest Edited by:

Dr Subrata Kundu, (Academy of Scientific and Innovative Research (AcSIR), India)

Professor Shaikh M. Mobin, (Indian Institute of Technology Indore (IITI), India) 

Dr Shaila Afroj (University of Exeter, United Kingdom).

Energy storage and conversion techniques are the cornerstones of a sustainable future, allowing us to capture renewable energy when it’s abundant. 1D fibrous materials having unique properties, such as high surface to volume ratio and conductivity, can revolutionize advanced energy storage and conversion devices. These unique properties make them a key material for next-generation clean energy technologies. This special themed collection will explore the full potential of various 1D fibrous based materials for energy conversion and storage application including, but not limited to;

  • Design, synthesis, and characterization of 1D fibrous materials for energy storage (batteries, supercapacitors) and conversion (solar cells, water splitting, fuel cells, electrolyzers, thermoelectric materials).
  • Exploring novel 1D fibrous materials with improved storage and conversion efficiencies.
  • Theoretical understanding of 1D fibrous materials for energy conversion and storage techniques.
  • Mechanistic study of 1D fibrous catalyst includes in-situ characterisation and machine learning.
  • Cost-effective and real time fabrication of 1D fibrous materials towards practical/industrial applications.

Submissions should fit within the scope of the collection and Materials Advances. Please click on the journal link for more information on the journal’s scope, standards, article types and author guidelines.

Open for submissions until 11th December 2024

If you are interested in submitting a review-type article, please contact the Editorial Office at materialsadvances-rsc@rsc.org in the first instance with a proposed title and abstract as initial approval is required before submission to limit the number of review-type articles and avoid potential topic overlap.

Please note that article processing charges apply to all articles submitted to Materials Advances if, following peer-review, they are accepted for publication. Details of the APC can be found here. Corresponding authors who are not already members of the Royal Society of Chemistry are entitled to one year’s Affiliate membership as part of their APC. Find out more about our member benefits.

If your institution has a read and publish deal with the RSC you may be entitled to a discount or waiver to publish your manuscript. We encourage you to use our new journal finder tool to see if you are eligible for a discount or waiver through an institutional deal.

 

Submit your manuscript now!

 

 

We look forward to receiving your manuscripts!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the UKPorMat 24 Poster Prize Winners!

The 7th Annual UK PorMat Symposium was held at University of Liverpool on 4th-5th June by the RSC Porous Materials Interest Group. To accompany a programme filled with exceptional talks from a number of  esteemed researchers, posters were presented by PhD and post doctorial researchers . With a huge number of posters, from 86 candidates, displaying a wide variety of work within the porous materials field, it is our great pleasure in congratulating our three poster prize winners.

 

 

Winner of the Journal of Materials Chemistry A B and C poster prize: Bethan Turner, University of Liverpool.

‘Strategies towards porous metal-organic framework (MOF) glasses.’

 

Bethan Turner

Bethan Turner

 

Bethan graduated with an MCHEM in chemistry and is currently in the first year of their PhD at the University of Liverpool with Dr Lauren McHugh as a supervisor and Professor Andy Cooper as a co-supervisor.

“The work I do is centred around MOF glasses with the aim of tailoring them for real life application. In my poster I discussed the trialling of a prospective porogen and the outcomes of those experiments. It was ultimately unsuccessful in increasing porosity, however, it was deduced that the incorporation method may be the fault. Subsequently, alternative methods were proposed such as experimenting with altered linkers in the structure and incorporating the porogen through saturating the pores of the crystalline material by soaking in a saturated solution. Long with porous materials, I also have an interest in accessibility in chemistry teaching. And ultimately with my project, I hope to contribute to the efforts in developing materials for water purification.”

 

 

 

 

Winner of the Dalton Transactions poster prize: Omar Al-Miqdadi, Imperial College London.

‘Accelerating discovery and implementation of porous liquids for CO2 removal.’

Omar Al-Miqdadi

Omar Al-Miqdadi

 

Omar Al-Miqdadi’s background is in chemistry where they attended the University of Warwick for their undergraduate studies. During Omar’s master’s year, they worked under the supervision of Professor Richard Walton to discover iron-based metal organic frameworks which could be built from sustainably sourced organic ligands.

In 2022, Omar began their PhD at Imperial College London under the supervision of Dr Becky Greenaway and Professor Camille Petit. Their experience in metal organic frameworks proved to be useful when delving into the world of type III porous liquids; dispersions of metal organic frameworks in pore-excluded liquids. They are using automated high-throughput experimentation to discover effective type III porous liquids for CO2 capture.

“In order to discover the ‘best’ porous liquid systems for carbon capture, we have employed an automated high-throughput workflow as our approach. Using 8 different ionic liquids as our pore-excluded liquids, we vary cation functional group and alkyl chain length using a constant anion and metal organic framework.

We are able to synthesise ZIF-8 on the automated platform and using solid dispensing, combine it with the 8 ionic liquids. Using a different liquid handling platform, we then test the viscosity of these dispersions based on a relationship between flow rate and viscosity. Following this, we use thermogravimetric analysis to measure CO2 uptake of the dispersions and by comparing to the uptake of the neat ionic liquids, we’re able to determine whether they are porous combinations or not. Finally, we look at the stability of these porous liquids by using a camera and custom monitoring rack to analyse how well they remain dispersed and by using dynamic light scattering to analyse the ZIF-8 particle size over time looking for any potential aggregation.

We hope that by using this workflow we are able to elucidate key structure-property relationships and by continuing to study these systems are able to understand what makes a type III porous liquid a good CO2 capture sorbent.”

 

Winner of the Materials Advances poster prize: Evandro Castaldelli, University of Nottingham.

‘The role of interfacial chemistry on MOF-coated optical fibres for gas sensing applications.’

Evandro Castaldelli

Evandro Castaldelli

Evandro Castaldelli received his PhD in Chemistry in 2016 from Universidade de Sao Paulo, Brazil, working on the synthesis of a new semiconducting metal-organic framework with interesting photoelectronic properties. The electrical characteristics were investigated at University of Surrey, UK, where Evandro spent 12 months working with Prof Ravi Silva CBE. He followed up with his first post-doctoral position, in 2017, also at Universidade de Sao Paulo, working on the synthesis of phthalocyanine-based coordination polymers and derived graphene nanocomposites, for electrochemical applications in water splitting and glucose sensing.

In 2018, alongside Evandro’s post-doc, he was offered a position in industry as main researcher and scientific consultant at Golden Technology LDTA, Brazil, working in fine chemicals for textiles. Projects and interests encompassed all aspects of this industry, from pre-treatments, dyeing, finishing, and water treatment. Evandro was particularly excited to be part of the development of products to obtain functional textiles, including antimicrobial, insect repellent and flame-retardant coatings. During this time, he also had an active role in bridging the gap between academia and industry, when they attracted the interest of local research institutions for innovation partnerships.

In 2021 Evandro  decided to return to academia, when he started as a Lecturer in Physical Chemistry at Universidade Federal de Santa Catarina, Brazil, teaching Thermodynamics, Kinetics, Chemistry of Interfaces and Quantum Mechanics. Then, in 2022, he started my current role as Post-Doctoral Research Associate at University of Nottingham, UK, working with the development of optical fibres coated with metal-organic frameworks for gas sensing in healthcare. Evandro is also a volunteer demonstrator, for laboratory and outreach events, and tutor in Inorganic Chemistry.

“The development of sensors for gases and volatile organic compounds (VOCs) is key for a range of applications such indoor air quality control and healthcare. Metal-organic frameworks (MOFs) are promising candidates as they have been demonstrated to have excellent and tuneable selectivity for different gases and VOCs. Despite recent progress, MOF integration into devices is still a major challenge, as synthetic conditions are often harsh and deposition mechanisms are not yet fully understood1. Furthermore, studies are often limited to layer-by-layer deposition of archetypal MOFs. In this work we show: the rapid solvothermal deposition of isostructural MFM-101 and MFM-190(CH3) frameworks onto optical fibres; and the influence of synthetic conditions and role of surface functionalisation on coverage, morphology, and phase purity. Our results will fill a knowledge gap in this field and move towards a general protocol for controlled MOF deposition onto various substrates.
Surface-mounted MOFs are usually obtained via liquid phase epitaxial layer-by-layer growth on substrates featuring some surface functionalisation, which can be achieved via sol-gel, self-assembled monolayers or nanoparticle deposition. While it affords great control over film thickness, morphology, and homogeneity, it is often slow and may not be applicable to all MOFs. On the other hand, simple solvothermal techniques usually yield poor coverage and little control over thickness, crystal phase and orientation2. In our case study, we have used MFM-101 and MFM-190(CH3), two isostructural copper-based MOFs which are typically synthesized solvothermally at 80 °C, using HCl as modulator, with reaction times varying from 2 to 4 days3. These conditions are usually optimized to yield high quality, large crystals, which are often contradictory with effective surface coverage and fibre optic sensors. For the latter, crystals larger than 5 μm fall outside the effective sensing area. We were able to achieve phase purity and reduce crystal sizes to the 1-5 μm range by removing the modulator, while optimizing deposition temperatures and significantly reducing reaction times to 15 min.
U-shaped optical fibres were functionalised with hydroxyl (-OH) groups to provide initial anchoring for MOF deposition, while a non-functionalised (bare) fibre was included as reference. SEM/EDX and Raman analyses of the coatings revealed that morphology and phase purity can be controlled via surface functionalisation alone. Real-time spectroscopical investigation of MFM-101 and MFM-190(CH3) depositions provided information about growth kinetics and surface coverage, revealing the unexpected influence of interfacial chemistry not only on surface coverage, as well as in crystal density and size. On average, non-functionalised fibres had crystals in the 5-20 μm range while hydroxylated fibres showed crystals in the 1-5 μm range. The resulting sensors can be used with a range of VOCs, and, surprisingly, their performance is also affected by the initial anchoring group. Preliminary results in VOC sensing indicate that hydroxylated fibres perform significantly better than their non-functionalised counterparts.”
References
[1] A. Kirchon, L. Feng, H. F. Drake, E. A. Joseph and H.-C. Zhou, Chem. Soc. Rev. 2018, 47, 8611
[2] A. L. Semrau, Z. Zhou, S. Mukherjee, M. Tu, W. Li and R. Fischer, Langmuir 2021, 37, 6847-6863
[3] W. Li et al, J. Am. Chem. Soc. 2022, 144, 13196-13204

Congratulations once again to our UKPorMat 2024 poster prize winners!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Thank you for contributing to Materials Advances

Materials Advances is celebrating its fourth birthday this year! As the journal continues to grow and establish its place within the materials research community, we would like to thank all our authors, reviewers, editors, and readers for their continued support.

 

Take a look at some of our recent metrics to see how the journal is performing.

There are many exciting journal initiatives that you can get involved with, including:

 

Topical themed collections: Find out about our current open calls for paper here or read some of our recently closed collections

Discover our new regional collection:

Spotlights on well-received review articles in Materials Advances

  • Read our blog series exploring some of our highly cited review articles

Check out our Popular Advances collection, which is updated regularly

  • Read the collection here

Materials Advances Paper Prize

  • The 2024 winners of the Materials Advances Paper Prize can be found here.
  • To be in with a chance of winning a future paper prize, submit your next piece of work to the journal.

Meet the Materials Advances team at upcoming conferences!

Our Editorial Office team will be attending conferences and events over the second half of 2024, including:

  • PhotoIUPAC 2024, July 14 – 19, Valencia
  • ACS/RSC-Qatar Regional MEA Conference 2024, November 3 – 5, Doha
Thank you again for your support of Materials Advances!
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed collection on hybrid pores

Hybrid Pores for CO2 Technologies

Guest Edited by Petra Ágota Szilágyi , Jenny G. Vitillo , and Gavin A. Craig

Materials Advances is delighted to introduce our latest themed collection focused on inorganic-organic porous materials that enable the capture, storage, sensing, and conversion of CO2.

You can explore the collection and read the introductory editorial from our guest editors below. Articles in the collection are published in Materials Advances so they are all open access and freely available.

                 Read the introductory editorial

 

Read some of the featured articles below.

Simulating excited states in metal organic frameworks: from light-absorption to photochemical CO2 reduction
Michael Ingham, Alex Aziz, Devis Di Tommaso and Rachel Crespo-Otero
Mater. Adv., 2023, 4, 5388-5419 DOI: 10.1039/D3MA00518F

 

 

 

 

Pore volume regulated CO2 adsorption in C–C bonded porous organic frameworks
Himan Dev Singh, Piyush Singh, Deepak Rase and Ramanathan Vaidhyanathan

Mater. Adv., 2023, 4, 3055-3060 DOI: 10.1039/D3MA00218G

 

 

Rapid microwave synthesis of sustainable magnetic framework composites of UTSA-16(Zn) with Fe3O4 nanoparticles for efficient CO2 capture
John Luke Woodliffe, Amy-Louise Johnston, Michael Fay, Rebecca Ferrari, Rachel L. Gomes, Ed Lester, Ifty Ahmeda and Andrea Laybourn
Mater. Adv., 2023, 4, 5838-5849 DOI: 10.1039/D3MA00351E

 

 

 

Unusual adsorption-induced phase transitions in a pillared-layered copper ethylenediphosphonate with ultrasmall channels
Margherita Cavallo, Matteo Signorile, Roberto Köferstein, Valentina Crocellà and Marco Taddei
Mater. Adv., 2023, 5, 183-198 DOI: 10.1039/D3MA00356F

 

 

 

 

Direct CO2 to methanol reduction on Zr6-MOF based composite catalysts: a critical review
Elif Tezel, Dag Kristian Sannes, Stian Svelle, Petra Ágota Szilágyi and Unni Olsbye
Mater. Adv., 2023, 4, 5479-5495 DOI: 10.1039/D3MA00345K

 

 

 

Connecting metal–organic cages (MOCs) for CO2 remediation
Javier Martí-Rujas
Mater. Adv., 2023, 4, 4333-4343 DOI: 10.1039/D3MA00477E

 

 

 

Materials Advances is always interested in considering high-quality articles on advanced functional materials and their manufacturing processes and we would be delighted if you would consider the journals for your next submission, which can be made via the Materials Advances online submission service. All submissions will be subject to initial assessment and peer review as appropriate according to the journals’ guidelines.

We hope you enjoy reading this collection and we look forward to seeing how this field progresses! Please continue to submit your exciting work on advanced functional materials to Materials Advances.

Do you have an idea for our next themed collection? Suggest a topic using our online form.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Announcing the 2024 Materials Advances Paper Prize winners!

We are delighted to announce this years annual Materials Advances Paper Prize, celebrating the most significant articles published in the journal in the previous calendar year.

This year we recognise 3 outstanding papers that were published in 2023. Find the winner and runner-up papers below.

Materials Advances 2024 Paper Prize winner:

Redox-active, porous pyrene tetraone dendritic polymers as cathode materials for lithium-ion batteries

Lucas Ueberricke, Felix Mildner, Yuquan Wu, Elisa Thauer, Tom Wickenhäuser, Wen-Shan Zhang, Yana Vaynzof, Sven M. Elbert, Rasmus R. Schröder, Rüdiger Klingeler and Michael Mastalerz

Materials Advances 2024 Paper Prize runner-up:

Fabrication of low-cost and flexible perovskite solar cells by slot-die coating for indoor applications

Cristina Teixeira, Rosinda Fuentes-Pineda, Luísa Andrade, Adélio Mendes and Dávid Forgács

Materials Advances 2024 Paper Prize runner-up:

Evaluation of techniques used for visualisation of hydrogel morphology and determination of pore size distributions

Imanda Jayawardena, Petri Turunen, Bruna Cambraia Garms, Alan Rowan, Simon Corrie and Lisbeth Grøndahl

 

If you want to be in with a chance of winning the Materials Advances Paper Prize in a future year then submit your next high quality materials science research to the journal here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the Prize Winners at ESEMA

Journal of Materials Chemistry C, Materials Advances and Materials Horizons were proud to support the ESEMA (Emerging Solar Energy Materials & Applications) workshop on the Island of Porquerolles, Hyères, France from 27th to 31st May 2024.

Yana Vaynzof (Associate Editor of the Journal of Materials Chemistry C & Materials Advances), Francesca Brunetti (Associate Editor of Sustainable Energy and Fuels), Nicolas Leclerc (University of Strasbourg) took part in the panel to evaluate the student presentations and select the two winners of the prizes.

The criteria were: quality of research and novelty, quality of slides and presentation, and quality of answers to questions from the audience.

Congratulations to the winners!

Mrs Claire BOURGUIGNON

PhD student at University Grenoble Alpes, CEA Grenoble who won the Materials Horizons Prize

“Development of a novel push-pull organic dye for hydrogen production in dye-sensitized photoelectrochemical cells”

 

Mrs Lydia ABBASSI

PhD student at Institut Matériaux Microélectronique Nanosciences de Provence, Aix-Marseille Université, Univ. de Toulon, who won the Journal of Materials Chemistry C Prize

“Fabrication of intrinsically stretchable organic solar cells using a polymer acceptor”

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the prize winners at Spring E-MRS Symposium G

Journal of Materials Chemistry BMaterials AdvancesNanoscale and Nanoscale Advances were delighted to support two of the young researcher awards at Symposium G: Nanomaterials for Healthcare and Biomedical Engineering at the Spring E-MRS which was held in Strasbourg from May 27 – 31.

The young researcher awardees were selected by a jury of symposium committee and received prizes for their outstanding oral presentations. Please join us in congratulating Preeti Sati (IIT Kanpur) and Quoc Hung Tran (Institute of Material Science of Mulhouse, IS2M, CNRS)  for being awarded these prizes! Find out more about our winners below:

Preeti Sati hails from the Chamoli district of Uttarakhand, India. She completed her primary education in Rishikesh, Uttarakhand, and completed her M.Tech degree from the Department of Physics, Indian Institute of Technology Madras under the supervision of Prof. S. Ramprabhu. Her M.Tech thesis is titled “Graphene wrapped carbon nanotube based nanofluids for thermal conductivity applications”. Currently, she is pursuing her Ph.D. under Prof. Sri Sivakumar in the Material Science Programme department at Indian Institute of Technology Kanpur, where she is working on “In vitro liver Models for drug screening and disease modelling.

Hung Quoc Tran is currently pursuing his PhD in Life Sciences at Université de Haute Alsace, supervised by Dr. Valeriy Luchnikov at IS2M and Professor Thierry Vandamme at CRBS, Université de Strasbourg. His research interests include drug delivery systems, biomaterials, and nanotechnology. His current research focuses on the application of interface modification methods and enzymatic crosslinked biomaterials to enhance drug delivery efficiency in transdermal therapeutic systems, gastroretentive systems, and bio-membrane filtration for medical devices. Previously, he spent several years as a researcher at Lam Dong Medical College, gaining extensive experience working on various projects involving the chemical and biological investigation of natural plants, as well as topical and cosmetic formulation. He obtained a PharmD in Vietnam in 2016 and Master of Pharmaceutical Sciences from Université Paris Cité in 2019


About the symposium


Materials are going to hold an important role in healthcare applications. A symposium (G) on Nanomaterials for Healthcare and Biomedical Engineering, was organized at the European Materials Research Society (EMRS) Spring 2024 meetings in Strasbourg, France. The symposium attracted over 160 contributions from all over the world and was a very successful conference. This theme- Materials for Healthcare- is going to be a major focus at European and global landscapes and the organizers are motivated to continue hosting this symposium in long run. The Royal Society of Chemistry was very happy to sponsor the symposium in terms of two young researcher awards (Ms. Preeti Sati, Ms. Hung Quoc Tran) to motivate and promote the young researchers in the field of materials for healthcare.

Organizers:

Yogendra Kumar Mishra, University of Southern Denmark, DENMARK (MAIN)

Sanjay Mathur, University of Cologne, GERMANY(Co-organizer)

Malgorzata  Kujawska, Poznan University of Medical Sciences, POLAND (Co-organizer)

Gerardo Goya, University of Zaragoza, SPAIN (Co-organizer)

Yunbing Wang, Sichuan University , Chengdu, CHINA (Co-organizer)

 

https://www.european-mrs.com/meetings/2024-spring-meeting

https://www.european-mrs.com/nanomaterials-healthcare-and-biomedical-engineering-emrs

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the prize winners at Spring E-MRS Symposium T

Materials Horizons and Journal of Materials Chemistry C were delighted to sponsor a best oral presentation and best poster prize at Symposium T: Doping in organic semiconductors: fundamentals, materials and applications at the recent Spring E-MRS 2024 conference which was held in Strasbourg from May 27 – 31.

The winners were decided by a jury of invited speakers and the prizes were presented in an award ceremony at the end of the symposium.

Please join us in congratulating Joost Kimpel and Krzysztof Kotewicz for being selected as the winners! Find out more about them both below:

Krzysztof Kotewicz is currently working as a PhD student in Prof. Ergang Wang’s group at Chalmers University of Technology. His research focuses on conjugated materials for organic electronics, in particular light-emitting electrochemical cells.

Beforehand, he completed BSc Eng degree in chemical technology at Gdansk University of Technology in 2018, followed by a joint Nordic Five Tech Master degree in polymer technology at Technical University of Denmark and Chalmers University of Technology in 2021.

Krzysztof was awarded the poster prize sponsored by Journal of Materials Chemistry C for his poster entitled, ‘Acidochromic behavior of TFA-doped IDT-based conjugated polymers containing azo, imine and vinyl bonds’

Joost Kimpel is a PhD student at Chalmers University of Technology under the supervision of Prof. Christian Müller. Before his PhD, he was awarded a MChem in Chemistry from Oxford University (2019) followed by a MSci in Materials Science and Engineering from Tokyo Institute of Technology (2021). He currently works on the simplifying the synthesis of new polythiophenes bearing polar side chains for a variety of organic electronics applications.

Joost was awarded the presentation prize sponsored by Materials Horizons for his presentation entitled, ‘Synthetically Simple Organic Semiconductors for Thermoelectrics Prepared via Direct Arylation Polymerization’

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

RSC Showcase Symposia: Building a more sustainable world through solutions focused chemistry

Will you be attending ACS Green Chemistry & Engineering Conference in Atlanta next week?

If so, we warmly welcome you to join our exciting session featuring cutting-edge talks from leading international researchers in the field of sustainability science, and representatives from RSC journals.

In addition to these exciting scientific talks, our speakers will take part in panel discussions examining key themes relevant to how the scientific community can help accelerate the transition to net-zero and build a more sustainable world through solutions-focussed chemistry – come and join the conversation!

Symposium details

Title: RSC Showcase Symposia: Building A More Sustainable World Through Solutions-Focused Chemistry
When: Wednesday 5th June, 9:30am
Where: Oakwood B Room; Crowne Plaza Atlanta Perimeter at Ravinia

Headshots of smiling speakers

Speakers and Talk titles 

Fran Kerton, Memorial University of Newfoundland, Canada

Chemical conversations for a sustainable future

 

Adam Lee, Griffith University, Australia

Catalysing sustainable chemical manufacturing

 

Maria Elena Rivas, Johnson Matthey Technology Centre, UK

Mechanochemistry in Johnson Matthey

 

Natalie Stingelin, Georgia Tech, USA

Cool plastics for Energy Sustainability

 

Antonio Facchetti, Georgia Tech, USA

Sustainable synthesis of new mixed ionic-electronic conductors & devices

 

Juan-Pablo Correa-Baena, Georgia Tech, USA

Phase transformations via surface defects in halide perovskites

Furthermore, RSC Sustainability and EES Catalysis Executive Editor, Emma Eley, will be present for the full duration of the conference and will be pleased to talk to you about your research and answer any questions that you may have about publishing in RSC journals. Stop by stand 10 in the exhibition hall to discover more about RSC Publishing, or get in touch by email to arrange a meeting with Emma. Smiling headshot of woman

We hope that you will be able to join us at this exciting session!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)