Archive for the ‘Infographics’ Category

Near-infrared-activated nanoparticles for localized anticancer drug delivery

To celebrate some of the excellent work that has been published in Materials Advances this year, we asked some of our authors to discuss their work in more detail. In this post, we hear from Dr Shazid Md. Sharker about their recently published article entitled “NIR-light-triggered delivery of doxorubicin-loaded PLGA nanoparticles for synergistic cancer therapy on DMBA/TPA induced tumor-bearing mice“.

Discover the key message from this article

 

Meet the author

 

Dr Shazid Md. Sharker obtained his PhD in 2016 from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea. Dr Sharker got a research training experience from the School of Medicine, Stanford University, California, USA. Currently, he is working as an Associate Professor in the Department of Pharmaceutical Sciences at North South University (NSU), Dhaka, Bangladesh. Dr Sharker plans to continue exploring nanotechnology at NSU to expand his understanding of nanoscale biological interactions. He aims to develop polymer and liposome-based nanocarriers and discover new nanoparticles (NPs) having both therapeutic and diagnosing (theragnostic) applications.

 

 

An interview with the author

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

Drug delivery technology is heavily reliant on technology; like others, I find excitement in developing or leveraging new tools, methods, or technologies that can enhance nanotechnology in drug delivery and its outcomes. Securing funding for research projects is a common challenge. Finding a balance between teaching responsibilities and research pursuits can be challenging for academics. Heavy teaching loads may limit the time available for focused research.

 

How do you feel about Materials Advances as a place to publish research on this topic?

The prospect of publishing in reputable journals and receiving recognition for one’s work can be a source of great satisfaction and motivation. It made me decide on an open-access journal like Materials Advances and a well-known publisher like RSC as a place to publish research on this topic.

 

Can you share one piece of career-related advice or wisdom with early career scientists?

The research career is like a journey, just like moving from one place to another. In both research and study, obstacles can be overcome, and new discoveries can be made, and a sense of progress and growth. A successful research career is not solely defined by the number of papers published but also by the ability to adapt, collaborate, and contribute meaningfully to their field and beyond. Cultivating a diverse skill set early in their career can position them for long-term success and make them more adaptable to the evolving landscape of scientific research. While becoming an expert in their chosen area is crucial, having a range of complementary skills can enhance scientists’ versatility and make them more resilient in a rapidly changing research landscape.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Improving synthetic dye degradation with cocatalyst-enhanced Zn-doped Cu2O photocatalysts

To celebrate some of the excellent work that has recently been published in Materials Advances, we asked some of our authors to discuss their work in more detail. In this post, we hear from Setia Budi and his co-authors about their recently published article entitled “Enhanced photocatalytic activity of CoNi-decorated Zn-doped Cu2O synthesized by electrodeposition technique“.

 

Meet the authors

 

 

Setia Budi received his Ph.D. in materials Science from Universitas Indonesia in 2017. While pursuing his Ph.D., he conducted research at the School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) through a sandwich-like program. Currently, he serves as a lecturer in the Department of Chemistry at Universitas Negeri Jakarta, where he leads a research group specializing in the synthesis of nanostructured films for electrocatalyst, photocatalysts, and bio-applications. His research is dedicated to uncovering strategies for enhancing the performance and durability of these films.

 

 

 

 

 

 

Mega Gladiani Sutrisno graduated in chemistry from the Universitas Negeri Jakarta in Indonesia. In 2021 she began her independent career as an Assistant Researcher at The Centre of Innovation, where she worked on the synthesis and catalytic activity characterization of cuprous oxide doped semiconductor nanomaterials. Currently she is working to elucidate the improved photocatalytic activity and stability and semiconductor materials for photodegradation of synthetic dyes.

 

 

 

 

An interview with the authors

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

I am currently most excited about the remarkable advancements in nanostructured films for photocatalysts, electrocatalysts, and bio-applications. However, my research’s primary challenge is to boost the catalytic activity and longevity of these films.

 

How do you feel about Materials Advances as a place to publish research on this topic?

I view Materials Advances as an excellent platform for publishing our research on this topic due to its focus on materials science and its potential to reach a broad audience of researchers and professionals in the field.

 

Can you share one piece of career-related advice or wisdom for early career scientists?

As an earlier scientist, I may not have profound wisdom to offer. Nevertheless, I’d like to share a valuable piece of advice: stay curious, persistent, and open to collaboration.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Cryogenic Characterisation of Calcium Phosphate Cement/Hydrolgel Biomaterials

Probing the microporosity and 3D spatial distribution of calcium phosphate cement/hydrogel biomaterials using FIB/SEM at cryogenic temperatures

Mouad Essani, Baptiste Charbonnier, Nicolas Stephant, Hilel Moussi, Pierre Weiss, Jean Le Bideau and Patricia Abellan

Mater. Adv., 2023,4, 2474-2486 DOI: D2MA00966H

 

 

Meet the authors

 

Mouad Essani received his Ph.D. in physics and analytical chemistry from Sorbonne University in Paris in 2020, where he worked on the characterization of uranium microparticles in the French Alternative Energies and Atomic Energy Commission. His thesis work was mainly focused on the combined use of electron microscopy, X-ray spectroscopy and Monte-Carlo simulation to investigate both the microstructure and elementary composition of powder used in nuclear fuels. In 2021, he was a postdoctoral Fellow at the Institute of materials Jean Rouxel in Nantes under the supervision of Dr. Patricia Abellan. During his postdoc, he investigated the behaviour of synthetic bone substitutes using cryo-electron microscopy. He is currently a research engineer in the University of Paris-Est-Creteil where he applies electron microscopy to study atmospheric particles, aerosols and their impact on the environment.

 

 

 

 

 

 

Patricia Abellan joined the Institute of Materials of Nantes (IMN at Nantes University) with a Junior Talent chair of excellence in 2019 and got tenured as a CNRS research scientist in 2020. She received her BSc in Physics from the Aalborg University (Denmark) and her Ph.D. in Materials Sciences from the Autonomous University of Barcelona and Institute of Materials Science of Barcelona (ICMAB-CSIC), Spain, in 2011. She has held postdoctoral positions at the University of California – Davis and at the Pacific Northwest National Laboratory, USA, before taking a staff research scientist position at the SuperSTEM Laboratory (Daresbury, UK) in 2015. Her research focuses on the study of solid-liquid interfaces on hybrid and biomaterials using electron microscopy as well as on the elucidation of the radiation chemistry and radiation physics driving the processes at liquid-solid interfaces induced by the electron beam in an electron microscope.

 

 

 

 

 

 

An interview with the authors

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

I believe that I am particularly excited about the application of electron microscopy and spectroscopy tools to investigate atmospheric particles. I find topics related to this field both very challenging and interesting. Studying the impact of such particles on the environment constitutes an important aspect for our ecosystem.

 

How do you feel about Materials Advances as a place to publish research on this topic?

I believe that environment friendly processes request the development of materials that have lower impact on the environment. These materials should be investigated in terms of their chemistry, microstructure, etc. I think that research in that field fits perfectly within the scope of Materials Advances.

 

Can you share one piece of career-related advice or wisdom with other, early career scientists?

I consider myself as an early career scientist so I don’t think I can provide much wisdom. The only advice I can give is to never abandon ideas (in research of in life in general) that we believe in.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Advances 2022 Paper Prize winner

Find out more about the winning paper in this infographic

Facet-dependent carrier dynamics of cuprous oxide regulating the photocatalytic hydrogen generation
Cui Ying Toe, Marlene Lamers, Thomas Dittrich, Hassan A. Tahini, Sean C. Smith, Jason Scott, Rose Amal, Roel van de Krol, Fatwa F. Abdi and Yun Hau Ng

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Advances 2022 Paper Prize runner-up 2

Find out more about the winning paper in this infographic

Metal-free polypeptide redox flow batteries
Zhiming Liang, Tan P. Nguyen, N. Harsha Attanayake, Alexandra D. Easley, Jodie L. Lutkenhaus, Karen L. Wooley and Susan A. Odom

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Advances 2022 Paper Prize runner-up

Meet the authors and find out more about their research

White light emission generated by two stacking patterns of a single organic molecular crystal
Yuma Nakagawa, Kuon Kinoshita, Megumi Kasuno, Ryo Nishimura, Masakazu Morimoto, Satoshi Yokojima, Makoto Hatakeyama, Yuki Sakamoto, Shinichiro Nakamura and Kingo Uchida

Meet the authors

Yuma Nakagawa received his B.S. (2018), M.S. (2020), and Ph.D. (2023) degrees from Ryukoku University. He has been a postdoctoral researcher at the Molecular Engineering Institute, Shiga University of Medical Science since 2023. His current interests are development of organic functional materials and their applications.
Kuon Kinoshita received bachelor’s degree in science and technology from Ryukoku University, Japan, in 2019 and completed master’s degree in Teaching English to Speakers of Other Languages (TESOL) from Nottingham Trent University, UK, in 2021.
Megumi Kasuno received her Ph D. from Kyoto Institute of Technology in 2005. She was engaged in National Institute of Advanced Industrial Science and Technology, and moved to the present address at Ryokoku University in 2006.
Ryo Nishimura received his Ph. D. (2020) from Ryukoku University under the supervision of Professor Kingo Uchida. He has been working as a JSPS Young Research Fellow (PD) at Ryukoku University. From 2021, he has been working at Rikkyo University as an assistant professor.
Masakazu Morimoto received his B.S. (2001), M.S. (2003), and Ph.D. (2006) degrees from Kyushu University. Then, he engaged as a postdoctoral researcher at the Graduate School of Science, Tohoku University. In 2007, he moved to the Department of Chemistry, Rikkyo University, as an assistant professor. He was appointed as an associate professor at the same university in 2010 and was promoted to a full professor in 2017. His research interests include the development of advanced photofunctional molecules and materials.
Satoshi Yokojima studied physics at Keio University. After receiving PhD in 1995, he worked on optical response at University of Rochester. In 1997, he moved to University of Hong Kong and developed a method for linear scaling. After working on dissipative systems, he moved to University of Tsukuba and studied a charge transfer in DNA. He then moved to Mitsubishi Chemical in 2005 and worked on photochromic systems. He moved to Tokyo University of Pharmacy and Life Sciences in 2011 and promoted to Professor in 2016. His current interests are photochemistry, computational chemistry, and biophysics.
Makoto Hatakeyama obtained his undergraduate Bachelor and Masters degrees at the Yokohama City University in 2007 and 2009, respectively. He completed his PhD degree in 2012 at the Tokyo Institute of Technology in the group of Prof. Shinichiro Nakamura. He then undertook post-doctoral research at the RIKEN Research Cluster for Innovation. In 2018, he was appointed as a Lecturer at the Sanyo-Onoda City University. His research interests involve the quantum chemistry, molecular photophysics, and photoprotection mechanisms in biologically related molecules.
Yuki Sakamoto received his Ph.D. from Tokyo Institute of Technology in 2018. He studies functional molecules and catalysts using theoretical calculations.
After Ph.D. in 1984 at Universite de Strasbourg, France, Shinichiro Nakamura started industrial Computational Science in Mitsubishi Chemical Research Center for 26 years. Then, he moved to RIKEN 2011~2022, the focus is on the mechanism of natural photosynthesis. In 2022, he moved to Kumamoto University. The central subject of his research is the design of industrial photonic materials as well as studies on data science.
Kingo Uchida received his Ph.D. from Kyushu University in 1996. He was promoted to Professor in 2002. His recent interests lie in development of photoresponsive surfaces, and biological applications.

(a) What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

We are surprised to see the white fluorescence from ordered molecular packing in the crystalline state. Photochromic diarylethenes are well-known compounds, and many papers were already published, however the oxidized derivative showed unexpected results. Studying a compound from many view points is challenging.

 

(b) How do you feel about Materials Advances as a place to publish research on this topic?

Materials Advances is an international gold open access journal, which makes our results freely available to a large audience of readers. This provides a very significant environment for scientists like us.

 

(c) Can you share one piece of career-related advice for early career scientists?

It is important to develop your original works. Careful watching and deep consideration of the results sometimes induce serendipity.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Using Artificial Intelligence for New Material Discovery

An infographic highlighting how machine learning and ab-initio methods can be used to identify suitable materials

Complex amorphous oxides: property prediction from high throughput DFT and AI for new material search

Michiel J. van Setten, Hendrik F. W. Dekkers, Christopher Pashartis, Adrian Chasin, Attilio Belmonte, Romain Delhougne, Gouri S. Kar and Geoffrey Pourtois

Mater. Adv., 2022,3, 8413-8427 DOI: D2MA00759B

 

 

Meet the authors

 

 

Dr. Michiel J. van Setten got his PhD. in 2008 from the Radboud University Nijmegen after working metal hydrides for hydrogen storage. After a postdoc at the Kalsruhe Institute of Technology, working the development of hydrogen storage materials and electronic structure methods for molecules, and a postdoctoral stay at the Universite Catholique de Louvain, working on many-body perturbation theory, pseudo-potential development and materials informatics he presently works as a principal scientist at imec. Here he works on the use and development of materials informatics and the linking of ab initio methods to metrology for the semiconductor industry.

 

 

 

 

 

 

Hendrik (Harold) F.W. Dekkers graduated in industrial engineering of applied physics in 1994. After working for the semiconductor equipment vendor ASM he joined the research group of silicon photovoltaic devices at imec in Leuven (Belgium) in 1999. In 2008 he received his Ph.D. at the Catholic University of Leuven (KUL) on the vacuum process techniques for silicon solar cell manufacturing. In 2007 he joined the Thin Films group of imec, being responsible for plasma-enhanced CVD processes in the front-end-of-line (FEOL) and the development of work-function metals. Currently he is involved in developing semiconducting oxides for several applications in nanotechnology.

 

 

 

 

 

Christopher Pashartis pursued his undergraduate degree in Mathematical Physics (co-op) at the University of Waterloo in Canada, finishing in 2015. After graduating, he began his interest in Density Functional Theory semiconductor research, pursuing a Masters of Applied Science at McMaster University, concluding in 2017. In 2018, he began his Doctor of Philosophy in Physics with Dr. Geoffrey Pourtois and Prof. Michel Houssa at KU Leuven and imec, Belgium, where he now resides a researcher. His areas of interest include mechanical and optical properties of materials, quantum physics, ab-initio computational techniques, machine learning, and software design.

 

 

 

 

Adrian Chasin is a Principal Member of Technical Staff (PMTS) and the R&D leader of the FEOL Reliability team at imec. He is involved in several logic/memory projects ranging from advanced devices architectures through new memory concepts to use of non-conventional semiconducting materials. He received the PhD in Electrical Engineering from the University of Leuven in 2014 under the supervision of Prof. Paul Heremans, when he developed devices based on new semiconducting oxides for display and flexible electronics targeting RF applications. After working at NXP on modelling/evaluation of CMOS technologies, he joined the imec reliability group in 2015 as a researcher. His main research interests are FEOL/MOL reliability in advanced CMOS technologies and thin-film devices for memory and BEOL applications. He authored and co-authored more than 150 publications.

 

 

 

 

Attilio Belmonte is a Principal Member of Technical Staff and R&D team leader of the Memory Device team at imec, Belgium. His activities are related to the design, electrical characterization, and physical understanding of various memory devices, namely resistive RAM and DRAM. He received his PhD in Physics from Katholieke Universiteit Leuven, Belgium, in 2015, with a dissertation on novel CBRAM devices, and he joined imec as a researcher in the same year. His current focus is on the device engineering of oxide-semiconductor TFTs for 3D-DRAM implementation. He has authored and co-authored more than 75 journal and conference publications.

 

 

 

 

 

 

Romain Delhougne received his material science MSc degree from the University of Strasbourg in 2001 and started his carrier as epitaxy research engineer at IMEC in 2001. He joined Philips Research Leuven (later NXP) in 2005, where he has been leading for 10 years the integration of PCRAM and GaN power devices. He joined back IMEC in 2015 as a 3D-NAND integration engineer, and took the Active Memory Program manager role from 2018 onwards.

 

 

 

 

 

Gouri Sankar Kar received a PhD degree in semiconductor device physics from the Indian Institute of Technology, Kharagpur, India in 2002. From 2002 to 2005, he was a visiting scientist at Max Planck Institute for Solid State Research, Stuttgart, Germany, where he worked with Nobel Laureate Prof. Klaus von Klitzing on quantum dot FET. In 2006, he joined Infineon/Qimonda in Dresden, Germany as lead integration engineer. There he worked on the vertical transistor for DRAM application. In 2009, he joined imec, Leuven, Belgium, where he is currently the senior program director. In this role, he defines the research strategy and vision for DRAM, MRAM, Emerging Memory, and Exploratory Logic (MX2, Spin logic, etc.) solutions that can be integrated into existing computing system architecture for better performance & lower-power computing.

 

 

 

 

Geoffrey Pourtois studied Chemistry (1997) and obtained a PhD in Chemistry (2002) at the university of Mons Hainaut, Belgium. In 2003, he joined imec in Belgium, where he has been working in the field of atomistic modeling, with a special attention for establishing relations between material, interface defects and electrical device performances. From 2003 to 2022, he has been building and heading the group of material simulation and physics in imec, where he has been focusing on the modeling, using atomistic simulations, of nanoelectronic related materials. His group is being involved in building fundamental insights into the relations between material, interface and device electrical performances for CMOS, memory, and exploratory devices concepts. During their exploration endeavour, his team studied complex material gate stacks involved in CMOS and memory applications and contributed to the identification and the study of new materials for interconnect, emerging and magnetic memories. He was nominated imec fellow in 2020 and (co-) authored ~ 340 oral and peer-reviewed publications.

 

An interview with the authors

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

At imec, we work on the edge between academia and industry, in particular the semi-conductor industry. The state-of-the-art industry level equipment we have in our clean rooms mean we can do fundamental research that is at the same time directly relevant for a close to trillion-dollar industry. The semiconductor industry on its own lives on the crossroads between fundamental physics, etch chemistry, photo chemistry, computational solid-state physics, and electrical engineering, touching on many aspects of materials science. We work on many different topics in teams combining experts from all these fields. These many interactions and the fact that predictions we make based on the calculations, such as presented in our latest paper, are tested on the same process flows and machines that the big tech giants use to produce the chips that are present in all the devices around us, makes my work extremely exciting.

 

How do you feel about Materials Advances as a place to publish research on this topic?

I had a constructive and efficient interaction with the editors of Materials Advances in the process of publishing the paper. Also, topic wise I think the journal is fitting well, many of the recently appeared papers fit well to my general interest.

 

Can you share one piece of career-related advice or wisdom with other early career scientists?

If I look at the young researchers around me, I see they all struggle a bit with the dilemma between acting and rethinking. I mostly see this leading to overthinking. Young researchers should act. If you have a good idea, pursue it, and go into it head on. Don’t spend months or even years reconsidering and rechecking the literature. The older more experienced colleagues should be there to prevent you from reinventing the wheel. I have seen examples of both rethinking and acting fast, both in my own career and in those of people around me. Hardly ever did following an idea turn out a disaster. On the other hand, I have seen various examples of none pursued good ideas eventually being executed by other groups.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)