Archive for the ‘Hot Article’ Category

Hot Article: The role of material structure and mechanical properties in cell-matrix interactions

When thinking about movement of the human body it is often thought about it in terms of muscles contracting and relaxing, joints bending and straightening, but I don’t think I have ever thought about movement on a cellular level.

During movement cells in our bodies are subject to mechanical force and as a result they are stretched, sheared and compressed. Many cells passively experience this force and some have even evolved to be particularly sensitive to it and act as sensors – such as the tiny hairs present inside the human ear.

However, some cells are a bit more active and can actually exert their own mechanical force on the environment around them. This interaction is used to achieve various physiological functions like the healing of tissue, fighting infection and growth and differentiation of cells. In order to carry out these functions the cells must be able to sense and understand the mechanical context of the world around them.

This review summarises the evolution of the area of science focused on understanding the mechanobiology of cells and tissues and how different properties of their surrounding environment can be analysed both scientifically and by the cell itself. It also goes further to discuss of different material properties effect the mechanosensing of cells.  Whilst this is still a developing field this review gives a good overview of where our present understanding is at and what limitations there are to overcome in the future.

The role of material structure and mechanical propertie in cell-matrix interactions
Nicholas D. Evans and Eileen Gentleman
J. Mater. Chem. B, 2014, 2, 2345-2356. C3TB21604G

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

NIR Luminescent Nanomaterials for Biomedical Imaging

Commonly in my household the phrase “you make a better door than you do a window” is often fired at whichever thoughtless member is blocking the latest episode of whatever intelligence diluting programme is being watched at the time. However, this same, seemingly mundane problem, of human solidity is also being suffered by scientists developing new techniques for biomedical imaging.

Luminescent labels have been widely used for biological applications, primarily bioimaging and assays. They offer advantages over tomographic imaging techniques (e.g. CT, PET and MRI) including fast feedback and high selectivity and resolution. Unfortunately, adsorption and scattering of the photos emitted by these labels caused by biological tissue and water inside the body create problems such as weak signals and limited depth of detection.

Luckily, there are some wavelengths of light that are not adsorbed by the body and fall into what is known as the “biological transparency window”. There are two ranges: NIR I 650 – 900 nm and NIR II 1000 – 1450 nm. Since the discovery of these NIR regions research has increased with the focus of developing nanomaterials that can be excited or emitted within these wavelengths. The main content of this review written by Wang and Zhang is an overview of these novel nanomaterials, divided into four main species: lanthanide based nanomaterials, carbon based nanomaterials, quantum dots and noble metal nanoparticles. Covering their fabrication and application and also their shortcomings and what challenges and opportunities there are in the future.

NIR Luminescent Nanomaterials for Biomedical Imaging
Rui Wang and Fan Zhang
J. Mater Chem. B, 2014, 2, 2422-2443. C3TB21447H


H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation

Hydrogen holds immeasurable promise in our search for alternative, sustainable, cleaner fuels. However, the simple, cheap production of hydrogen is still proving a problem. Water photolysis is a great way to achieve pure H2 and as O2 is the only side product it does not result in the harmful greenhouse gas emissions that arise from using hydrocarbons to produce H2. Unfortunately, the generation of H2 by water photolysis is challenging as the reaction that forms O2 is much slower than the H2 forming reaction. The use of an efficient photocatalyst can significantly improve the success of this process.

This paper by Moniz et al. details the development of just such a photocatalyst. In this work a bimetallic BiFeO3 catalyst is prepared using a novel method of Aerosol Assisted Chemical Vapour Deposition (AA CVD). This is the first time that this method has been used to prepare a photocatalyst of this type. The team go on to test this photocatalyst for the electrolysis of water using both UV and solar irridation and encouragingly, activity is confirmed for the BiFeO3 catalyst. Even more impressively the catalyst greatly outperforms both a commercially available photocatalyst (TiO2 Activ® glass) and another recently published photocatalyst (B-doped TiO2 films).

The novel synthetic methodology presented in this paper enables large area thin film deposition and as a result has potential for high volume applications in the future.

A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation

Savio J. A. Moniz, Raul Quessada-Cabrera, Christopher S. Blackman, Junwang Tang, Paul Southern, Paul M. Weaver and Claire J. Carmalt,
J. Mater. Chem. A, 2014, 2, 2922-2927 C3TA14824F

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: A highly luminescent chameleon: fine-tuned emission trajectory and controllable energy transfer

Luminescent materials are a part of our everyday life featuring in lighting, television screens, etc. The recent emergence of lanthanide-based metal-organic frameworks (Ln-MOFs) has illuminated the future development of new functional luminescent materials. Research into Ln-MOFs is still at its early stages but they have shown promise in the development of effective novel compounds.

This paper by Zhang et al. takes Ln-MOFs to the next level and presents the first example of mixed-lanthanide MOFs. The work combines Eu3+, Gd3+ and Tb3+ as co-doped ions on to one MOF framework. The co-doped Ln-MOF is capable of excitation-dependent mutual conversion between blue, white and yellow emission chromaticity…I am guessing this is where the rather whimsical title has come from.

This succinctly written communication gives a first look at the synthesis and testing of this exciting new Ln-MOF and gives an idea of where the research into Ln-MOFs might be heading in the future.

A highly luminescent chameleon: fine tuned emission trajectory and controllable energy transfer
Huabin Zhang, Xiaochen Shan, Zuju Ma, Liujiang Zhou. Mingjian Zhang, Ping Lin, Shengmin Hu, En Ma, Renfu Li and Shaowu Du
 J. Mater Chem. C, 2014, 2, 1367-1371. C3TC31624F

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment

The use of engineered nanostructures in biomedical applications and optimized therapy is revolutionising medicine and the way we treat disease. It probably doesn’t come as a surprise that cancer is one of the biggest driving forces responsible for development of therapeutic nanotechnologies. The potential for earlier detection and targeted treatment of tumours using nanotechnologies will act not only to reduce the number of cancer deaths but also reduce the side effects and increase the efficacy of treatments.

This review by Zhang et al. examines the recent advances in nanotechnology for targeted drug delivery and controlled drug release in cancer treatment. The focus of the introduction is on inorganic nanostructures, highlighting the advantages of these materials over bioorganic nanomaterials, namely the ease of synthesis, modification and the control of size, shape and surface functionalization can be carried out. All of which allow for the design of materials for specific tissue or cell type targeting, controlled drug delivery and in vivo diagnostic imaging.

The review also covers the mechanisms of systematic targeted drug delivery, stimuli-responsive drug release and biocompatibility of these inorganic nanostructures. Overall, this review gives a clear and varied look at the different technologies under development that I would recommend to many scientists, not just those working in this field.

Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment
Lei Zhang, Yecheng Li and Jimmy C. Yu
 J. Mater Chem. B, 2014, 2, 452-470. C3TB21196G

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Articles for April!

Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network
Yuanyuan Li, Hongli Zhu, Hongbo Gu, Honggi Dai, Zhiqiang Fang, Nicholas J. Weadock, Zhanhu Guo and Liangbing Hu

Bidirectional actuation of a thermoplastic polyurethane elastomer
Martin Bothe and Thorsten Pretsch

Injectable biodegradable hydrogels: progress and challenges
Ki Hyun Bae, Li-Shan Wang and Motoichi Kurisawa

These papers are free to access until 8th May 2014 

To keep up-to-date with all the latest research, sign up to our RSS feed or Table of contents alert

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Rubicene: a molecular fragment of C70 for use in organic field-effect transistors

If cells are the building blocks of life, an analogy can be made that transistors are the building blocks of the digital world. They could be credited as the discovery of the 20th century. One of the IEEE milestones, transistors can be counted as biggest step in technology. For the first 20 years after the discovery of transistors, Germanium based transistors were used all over the globe replacing vacuum tube based gadgets. Germanium transistors certainly helped kick off the table size computer age, but silicon based transistors revolutionized the design of it and produced an entire industry in California namely silicon valley. But researchers would not be termed researchers if they stopped inventing and innovating making this world a better place to live. Inventions of materials like graphene, carobon nanotubes and fullerens are stretching the boundaries and making a dent in bringing a new generation of transistors which would shrink the size of electronic gadgets even further with landmark speed.

Excellent Performance of the Rubicene as semiconductor for transistor

Rubicene, a molecule with unusual electronic properties, is capturing the imagination of researchers as a molecule for a new generation transistors. Lee et al. successfully attempted use of this promising organic semiconductor material for organic field effect transistors. Rubicene, molecular fragment of C70 also a type of cyclopenta fused polycyclic aromatic hydrocarbon is well suited for the this application because of the high electron affinity. Lee et al studied theoretical electronic properties along with energy level alignments. Investigators also investigated the performance of Rubicene on the pentafluorobenzenethiol(PFBT) self-assembled mono-layer on Au electrodes. They found the mobility of the charge carriers was increased remarkably and also showed that systems like Rubicene based transistors will take the transistors to the higher levels. This suggests that no matter where development goes, transistors will continue to drive product research and technological advances.

Rubicene: a molecular fragment of C70 for use in organic field-effect transistors
Hyunbok Lee, Yue Zhang, Lei Zhang, Timothy Mirabito, Edmund K. Burnett, Stefan Trahan, Ali Reza Mohebbi, Stefan C. B. Mannsfield, Fred Wudl and Alejandro L. Briseno
J. Mater. Chem. C, 2014, Advanced Article. DOI:10.1039/C3TC32117G

Padmanabh Joshi is a guest web writer for the Journal of Materials Chemistry blog. He currently works at the Department of Chemistry, University of Cincinnati.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating

Targeted drug delivery has developed greatly over the past fifty years although it remains a largely uncontrolled exercise. In general, even the most effective vectors rely on passive targeting analogous to a driver travelling from Land’s End to John o’ Groats by making random turns until they see a sign saying “Welcome to John o’ Groats”.

Nano- and microrobots have the potential to offer a more guided method of drug delivery as well as facilitating new approaches to non-invasive surgery and diagnosis. A recent paper by Qiu et al. describes the preparation of a helical microrobot inspired by the flagella used to propel bacteria. To start with, polymer helices of around 10 µm in length were prepared using a two-photon polymerisation whereby a laser is used to “write” a 3D structure is photoresist. These helices were then covered in iron or iron/titanium thin films.

It was found that by using low-strength magnetic fields it was possible to control the movement of the helices through water. Pleasingly, the helices also showed no signs of cytotoxicity according to both direct cellular imaging and an MTT assay.

Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating
Famin Qiu, Li Zhang, Kathrin E. Peyer, Marco Casarosa, Alfredo Franco-Obregón, Hongsoo Choi and Bradley J. Nelson
J. Mater. Chem. B, 2014, 2, 357.  DOI:10.1039/C3TB20840k

James Serginson is a guest web writer for the Journal of Materials Chemistry blog. He currently works at Imperial College London carrying out research into nanocomposites.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Si nanotubes ALD coated with TiO2, TiN or AL2O3 as high performance lithium ion battery anodes

The battery is one of the biggest obstacles that is limiting many energy related breakthroughs. From allowing the capture and storage of renewable energy that will accommodate the fluctuating needs of power usage, to the use of electric cars that are able to drive further without needing to be recharged. Many solutions are being sort, some of them seeming increasingly wacky, such as the use of rhubarb to make flow batteries being carried out by Harvard researchers.

Yet it is the much more traditional low-cost lithium-ion batteries that are the most popular. These batteries are already included in a range of commercially available electric cars and small electronic gadgets. The specific energy storage capacity and the charge/discharge rate of Li-ion batteries is critical for their use and increasing this life time remains a significant challenge for their further development.

One method for the improvement is to use silicon based hollow nanostructures as high energy density anodes in these batteries. Using Si as the anode material can considerably increase the energy storage capacity of the battery; however commercialisation remains limited due to the materials accelerated mechanical failure relative to conventional anode materials. This paper by Lotfabad et al, uses atomic layer desorption of TiO2, TiN and Al2O3 on to the inner, outer or both surfaces of hollow Si nanotubes in order to overcome this mechanical failure and enhance the cycling performance of the material. Their results show that by coating with TiO2 both inside and out of the nanotube the coulombic efficiency is as high as 99.9% (among the highest ever reported for this group of materials). In reality this could mean a battery lifetime of up to 1000 cycles. The results presented in this paper are extremely promising for the future of Li-ion batteries.

Si nanotubes ALD coated with TiO2, TiN or AL2O3 as high performance lithium ion battery anodes
Elmira Memarzadeh Lotfabad, Peter Kalisvaart, Alireza Kohandehghan, Kai Cui, Martin Kupsta, Behdokht Farbod and David Mitlin,
J. Mater. Chem. A, 2014, 2, 2504-2516. c3ta14302c

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Articles for March!

Defect-sensitive crystals based on diaminomaleonitrile-functionalized Schiff base with aggregation-enhanced emission
Tianyu Han, Yuning Hong, Ni Xie, Sijie Chen, Na Zhao, Enqui Zhao, Jacky W.Y. Lam, Herman H. Y. Sung, Yuping Dong, Bin Tong and Ben Zhong Tang

Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology
Johannes Gierschner and Soo Young Park

 

Monodisperse Cu@PtCu nanocrystals and their conversion into hollow-PtCu nanostructures for methanol oxidation
Xiaoqing Huang, Yu Chen, Enbo Zhu, Yuxi Xu, Xiangfeng Duan and Yu Huang

These papers are free to access until 28th April 2014 

To keep up-to-date with all the latest research, sign up to our RSS feed or Table of contents alert 


(more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)