Archive for the ‘Hot Article’ Category

Hot Articles for February!

Dynachromes – dynamic electrochromic polymers capable of property tuning and patterning via multiple constitutional component exchange
Daminda Navarathne and W.G. Skene

 

Graphical abstract: Dynachromes – dynamic electrochromic polymers capable of property tuning and patterning via multiple= 

Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries
Xianyong Wu, Wenwen Deng, Jiangfeng Qian, Yuliang Cao, Xinping Ai and Hanxi Yang

Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials
Tiejun Zhu, Zhaojun Xu, Jian He, Junjie Shen, Song Zhu, Lipeng Hu, Terry M. Tritt and Xinbing Zhao

 

These papers are free to access until 18th March 2014 

To keep up-to-date with all the latest research, sign up to our RSS feed or Table of contents alert

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Versatile van der Waals epitaxy-like growth of crystal films using two-dimensional nanosheets as a seed layer: orientation tuning of SrTiO3 films along three important axes on glass substrates

Thin films are a part of everyday life; if you looked in a mirror today you experienced the advantages of a thin film at work. Crystalline thin films can be made of a range of functional materials and are essential to achieve the desired functionality of various devices including micromachines (not the miniature racing cars but micro-electronic-mechanical systems or MEMS). Crystal films can offer characteristics such as ferroelectricity and piezoelectricity, however these properties are strongly dependent on crystal orientation, degree of orientation and film crystallinity.

Epitaxial growth has become a highly important method for growing crystalline films as it allows for tailoring of properties in order to control electronic, optical and magnetic qualities. Unfortunately as described in this paper by Shibata et al, one of the basic requirements for attaining a good epitaxy is a close structural matching between a substrate and a growing crystal epilayer. This restriction causes a major obstacle for its wide application. In order to overcome this problem these researchers, led by Takayoshi Sasaki, have used 2D inorganic nanosheets of either Ca2Nb3O10, Ti0.87O20.52- or MoO2δ- as highly organised layers depositied onto amorphous glass. These different surfaces allow for the deposition of SrTiO3 on to the glass with precise and selective control of crystallographic orientation.

This novel technique has already grabbed press attention because of its cost-effective and universal nature that comes from the possibility to use conventional substrates such as glass and plastic that wasn’t possible before. Whilst some development is still required this technique is already being seen as a huge leap forward in the growth of crystal films that will bring significant technological innovation in the future.

Versatile van der Waals epitaxy-like growth of crystal films using two-dimensional nanosheets as a seed layer: orientation tuning of SrTiO3 films along three important axes on glass substrates

Tatsuo Shibata, Hikaru Takano, Yasuo Ebina, Dae Sung Kim, Tadashi C. Ozawa, Kosho Akatsuka, Tsuyoshi Ohnishi, Kazunori Takada, Toshihiro Kogure and Takayoshi Sasaki

J. Mater. Chem. C, 2014, 2, 441-449 C3TC31787K

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Micro- and nano-motors for biomedical applications

Abdelmohsen et al write in the first line of this review “biological motors are one of the most remarkable products of evolution” and I couldn’t agree more. Nanoscale biomotors are common in nature and these tiny machines have inspired scientists to copy nature and attempt to develop man-made micro- and nano-motors themselves. Incredibly, machines that are as small as one 60,000th of a human hair have already been made.

Micro-machines show remarkable promise for use in a wide range of biomedical applications; including drug delivery, sensing and isolation, nanosurgery and imaging that would enable targeted or non-invasive medicine to be carried out. Although as this review points out there is still a considerable amount of work to take micro- and nano-machines for in vivo applications from concept into reality.

This paper covers topics including micro-motor design, potential fuel and fuel free machines and new developments for their use in biomedical applications and gives an interesting and balanced insight into the work of micro-machines highlighting the opportunities and challenges currently facing this field.

Micro- and nano-motors for biomedical applications

Loai K. E. A. Abdelmohsen, Fei Peng, Yingfeng Tu and Daniela A. Wilson,

 J. Mater. Chem. B, 2014. C3TB21451F

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Synthesis of boronic acid-functionalized molecularly imprinted silica nanoparticles for glycoprotein recognition and enrichment

Glycoproteins are abundant in living organisms and appear in nearly every biological process studied. There are also many clinical biomarkers and therapeutic targets that are glycoproteins. The diverse function of glycoproteins is due to their structure – they consist of a polypeptide covalently bonded to a carbohydrate moiety.

The recognition and analysis of glycoproteins can be tricky. Mass spectrometry has proven a powerful tool; however when glycoproteins are in low abundance an enrichment process is required in order to see the proteins. In order to improve glycoprotein recognition Lin et al have developed a novel imprinting strategy using reversible covalent complexation of glycoprotein to create glycoprotein-specific recognition cavities on 3-acrylamidophenylboronic acid-immobilized silica nanoparticles (SiO2@AAPBA).

When tested the materials exhibited high glycoprotein adsorption capacity and excellent recognition selectivity not just between glycoproteins and non-glycoproteins but also between specific glycoproteins themselves.

Synthesis of boronic acid-functionalized molecularly imprinted silica nanoparticles for glycoprotein recognition and enrichment

Zian Lin, Lixiang Sun, Wei Lui, Zhiwei Xia, Huanghao Yang and Guonan Chen,
J. Mater. Chem. B, 2014, 2, 637-643. C3TB21520B

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Heat is Power

Writing this blog I am currently experiencing the uncomfortable outcome of not having a desk at home: scorched knees from my overworked laptop giving off enough heat to penetrate two substantial layers of clothing.

It is well known and, as I am experiencing, easily demonstrated that machines generate heat when they operate. This waste heat is an unfortunate trade off in order for it to produce enough power to perform its intended task. However, this heat whilst unavoidable does not have to be wasted. Through the use of thermoelectric materials this heat could be captured and used to generate emission-free renewable power.

This paper by Peng et al presents results of the enhancement of promising thermoelectric Yb-filled COSb3 skutterudite bulk materials, by incorporating nanoparticles into the bulk material lattice, in order to improve thermoelectric performance. By inclusion of AgSbTe2 nanoparticles the electrical resistivity of the composites is decreased and the ability of the material to convert heat to electricity is also improved. Overall this leads to a remarkable boost of the power factor that can be achieved.

A Study of Yb0.2Co4Sb12-AgSbTe2 nanocomposites: simultaneous enhancement of all three thermoelectric properties

Jiangying Peng, Liangwei Fu, Qiongzhen Lui, Ming Liu, Junyou Yang, Dale Hitchcock, Menghan, Zhou and Jian He
J. Mater. Chem. A, 2014, 2, 73-79. C3TA13729E

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: A facile strategy for the preparation of well-dispersed bimetal oxide CuFe2O4 nanoparticles supported on mesoporous silica

Who said a complex problem demands a complex solution? A recent article by Li et al. has shown that this could not be further from the truth. This team at the University of Hangzhou have taken a relatively simple approach to remedy the more complex problems of phase separation and poor reproducibility that are associated with the synthesis of bimetal oxide nanoparticles supported on mesoporous silica.

These materials, that combine just the right amounts of nano-activity with the benefit of macro-sized supports for easier handling, show great potential in the field of catalysis however difficulties in their preparation is creating limitations. As this paper demonstrates, the addition of a facile pre-drying treatment inserted into the material preparation process is the key to avoiding problems. The work mainly focuses on applying this technique to the synthesis of CuFe2O4 catalysts, but also tests the same procedure on NiFe2O4, CuCr2O4 and CoFe2O4 with great success. Catalytic activity of the synthesised CuFe2O4 was tested using the enantioselective reduction of acetophenone at room temperature, resulting in a yield of 93% and 93% ee. The magnetic properties of the catalyst, due to the presence of Fe, lead to easy recovery from the reaction and subsequent reuse showed retention of activity and enantioselectivity.

A facile strategy for the preparation of well-dispersed bimetal oxide CuFe2O4 nanoparticles supported on mesoporous silica
Bin Li, Min Li, Chaohua Yao, Yifeng Shi, Danru Ye, Jing Wu and Dongyuan Zhao
J. Mater. Chem. A, 2013, 1, 6742-6749.  C3TA10506G

H. L. Parker is a guest web writer for the Journal of Materials Chemistry blog. She currently works at the Green Chemistry Centre of Excellence, the University of York.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Articles for January!

Metal-ion doped luminescent thin films for optoelectronic applications
Yang Zhang and Jianhua Hao

Photon upconversion facilitated molecular solar energy storage
Karl Börjesson, Damir Dzebo, Bo Albinsson and Kasper Moth-Poulsen

In Situ synthesis and thermoelectric properties of PbTe-graphene nanocomposites by utilizing a facile and novel wet chemical method
Jingdu Dong, Wei Liu, Han Li, Xianli Su, Xinfeng Tang and Ctirad Uher

These papers are free to access until 3rd March 2014 

To keep up-to-date with all the latest research, sign up to our RSS feed or Table of contents alert 

(more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Incorporation of benzocarborane into conjugated polymer systems: synthesis, characterisation and optoelectronic properties

In addition to making the study of chemistry more complicated than it needs to be, three-centre-two-electron bonds also provide carboranes with many useful properties. The inclusion of carborane clusters allows the thermal and chemical stability of polymers to be improved, glass transition temperatures to be increased and the propensity for unwanted aggregation to be reduced.

Recent work by Marshall et al. has focused on the incorporation of ortho­-carborane into conjugated polymers for use in organic electronics. Carboranes are of particular interest in this area due to the possibility that their electron deficiency will allow them to fulfil the role of the electron acceptor in a donor-acceptor polymer. By preparing a novel monomer based on benzocarborane, it was possible to carry out a Stille polymerisation with an electron donating monomer and prepare polymers with molecular weights of the order of 10 kDa.

In comparison to analogous materials that contained no carborane, both novel polymers showed a decrease in band gap. One polymer was found to behave as a p-type semiconductor in a field effect transistor (FET) – the first time that a carborane-containing polymer has been used in such a device.

Incorporation of benzocarborane into conjugated polymer systems: synthesis, characterisation and optoelectronic properties
Jonathan Marshall, Zhuping Fei, Chin Pang Yau, Nir Yaacobi-Gross, Stephan Rossbauer, Thomas D. Anthopoulos, Scott E. Watkins, Peter Beavis and Martin Heeney
J. Mater. Chem. C, 2014, 2, 232.  DOI:10.1039/C3TC31663g

James Serginson is a guest web writer for the Journal of Materials Chemistry blog. He currently works at Imperial College London carrying out research into nanocomposites.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Biocatalysed mineralization in an aqueous two-phase system: effect of background polymers and enzyme partitioning

Although the chemistry of life is usually considered to be organic, living organisms also need to carry out inorganic synthesis. The formation of bones, teeth and shells all depend on the ability of cellular machinery to efficiently prepare inorganic materials with the correct morphology. This machinery is complex and involves the concerted action of small molecules, enzymes and high concentrations of macromolecules.

It is the role of the macromolecules that is the focus of a recent paper by David N. Carace and Christine D. Keating. They aimed to mimic the formation of CaCO3 by conducting a mineralization reaction in an aqueous two-phase system (ATPS). This system consisted of two immiscible polymer solutions: a poly(ethylene glycol) (PEG) solution floating on a solution of dextran. The mineralisation reaction involved the urease–mediated conversion of urea to carbonate ions and their subsequent reaction with calcium. It was found that biomineralization occurred predominantly in the dextran layer due to the localization of urease. It was also found that decreasing the relative volume of the dextran phase increased the rate of CaCO3 formation.

This work has demonstrated a fascinating method of biological reaction compartmentalization that does not rely on membranes.

Biocatalysed mineralization in an aqueous two-phase system: effect of background polymers and enzyme partitioning
David N. Cacace and Christine D. Keating
J. Mater. Chem. B, 2013, 1, 1794.  DOI:10.1039/C3TB00550j

James Serginson is a guest web writer for the Journal of Materials Chemistry blog. He currently works at Imperial College London carrying out research into nanocomposites.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot Article: Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors

Although the constant miniaturisation of consumer electronics has made it perfectly normal for somebody to leave their home in the morning carrying more screens than they leave behind, modern devices are still limited to being as physically rigid as spinning wheels and seed drills. The usefulness of flexible displays, wearable electronics and tactile sensors would all be improved dramatically by the development of reliable non-rigid conductors.

Wang et al. have recently devised a methodology for the manufacture of a stretchable material composed of highly conductive single-walled carbon nanotubes (SWCNTs) and a polydimethylsiloxane (PDMS) elastomer. The procedure starts with the preparation of a “non-stick” substrate obtained by perfluorinating glass. A suspension of SWCNTs in chloroform is then airbrushed over the substrate followed by the application of uncured PDMS. Following curing, an elastomer film with embedded nanotubes is obtained. An experiment examining the change in resistance with respect to tensile strain revealed that although resistance increased with strain when first stretched (as is generally observed), when the strain was removed and for the next ninety-nine strain-release cycles the resistance consistently decreased with increasing strain. This suggests that the first strain serves to orient the nanotubes in a particular way leading to this unexpected behaviour. In addition, the researchers found that specific patterns could be obtained by using patterned substrates or by simply spraying the SWCNT suspension through a patterned mask. The latter allowed the fabrication of a proof-of-concept strain sensor, touch pad and pressure sensor. All three devices were effective and demonstrate the utility of the fabrication technique.

Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors
Xiaolong Wang, Tingjie Le, Jillian Adams and Jun Yang
J. Mater. Chem. A, 2013, 1, 3580.  DOI:10.1039/C3TA00079f

James Serginson is a guest web writer for the Journal of Materials Chemistry blog. He currently works at Imperial College London carrying out research into nanocomposites.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents alert.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)