ChemComm’s 60th Anniversary – Zhiyong Tang

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Professor Zhiyong Tang (National Center for Nanoscience and Technology, China) below!

​​

Since 2006, Prof. Tang has been a Professor at National Center for Nanoscience and Technology, China. He obtained his bachelor’s and master’s degrees from Wuhan University, China, in 1996. He then moved to Changchun Institute of Applied Chemistry of Science, the Chinese Academy of Sciences, under the direction of Prof. Erkang Wang and obtained a Ph.D. degree in 1999. After six years as a Postdoctoral Fellow in three institutions, the Swiss Federal Institute of Technology, Zurich, Oklahoma State University, USA, and the University of Michigan, USA, he won the 100-Talent Program, at the Chinese Academy of Sciences in November 2006 prior to his current position. His research interests are mainly focused on controllable assembly and property manipulation of inorganic nanomaterials. He developed the general and fundamental methods for the preparation of inorganic nanoparticle assemblies with different dimensions, structures and functionalities, and explored their applications in the field of catalysis and energy.

 

What is your favourite thing about ChemComm?

My favorite thing about ChemComm is its ability to provide a powerful platform for the rapid communication of cutting-edge research in the field of chemistry. The journal’s emphasis on concise and impactful reports ensures that groundbreaking discoveries are promptly shared with the scientific community, fostering collaboration and innovation.

In what ways do you think ChemComm stands out among other journals in your field?

ChemComm stands out among journals in the field due to its long history of publishing groundbreaking research that has significantly impacted chemistry. For instance, the first proposals of graphdiyne and aggregation-induced emission (AIE), which revolutionized materials science and photophysics, were both published in ChemComm. This ability to highlight and share high-impact research swiftly and broadly distinguishes ChemComm from other journals.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The peer review process at ChemComm is thorough and constructive, ensuring that the published research meets high scientific standards. Interactions with the editorial team are professional, characterized by clear communication and prompt responses, which facilitate a smooth and efficient publication process.

Could you provide a brief summary of your recent ChemComm publication?

In our recent ChemComm publication, we discuss the advantages of various oxidation methods for improved performance of the electrochemical oxidation of ethylene and propylene, and provides an overview of current challenges and problems requiring further efforts.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in the paper?

The next steps involve optimizing the catalyst’s performance and scalability for industrial applications. Further research could focus on understanding the reaction mechanisms in greater detail through in-situ characterization techniques and computational modeling. Additionally, exploring the catalyst’s applicability to other substrates and reactions could open new avenues for sustainable chemical synthesis.

 

Be sure to read Prof Tang’s article, “Electrifying oxidation of ethylene and propylene” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Yoichi Kobayashi

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Professor Yoichi Kobayashi (Ritsumeikan University, Japan) below!

​​

Yoichi Kobayashi is a professor of Ritsumeikan University, Japan. He received his Ph.D. degree from Kwansei Gakuin University in 2011. He worked as a postdoctoral fellow for Research Abroad of Japan Society for the Promotion of Science (JSPS) at University of Toronto from 2011 to 2013. He worked as an assistant professor at Aoyama Gakuin University. In 2017, he moved to Ritsumeikan University. His current research focuses on developments and spectroscopy of novel nonlinear photofunctional materials. He has received several awards and has been nominated as a distinguished researcher, including 2021 Nanoscale Emerging Investigators, 2022 ChemSocRev Emerging Investigators, 2022 ChemComm Pioneering Investigators, and 2022 Nanoscale Horizon Award.

 

How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?

I think the most noteworthy point is the diversity of ChemComm has broadened its scope to include a wider range of research areas within chemistry such as materials science, nanotechnology, chemical biology, and more. This expansion has made it a go-to journal for a broad spectrum of chemical research.

What is your favourite thing about ChemComm?

Rapid publications of cutting-edge research. In addition, the 4-page restriction also makes it easier to read the papers.

In what ways do you think ChemComm stands out among other journals in your field?

Rapid publications and cutting-edge research

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The response from reviewers is faster compared to other journals, often returning results within about two weeks. The reviewers’ comments are frequently essential and contribute significantly to improving the quality of the paper. In many of the papers we have submitted, they are often accepted after just one round of review.

Are there ways in which the journal can further support and engage with future generations of scientists?

Webinars related to review articles published in ChemComm. I think it would be very convenient if it could be viewed as an archive.

Could you provide a brief summary of your recent ChemComm publication?

We developed air-tolerant photodoping-based photochromism of TiO2 and ZnO NCs using a temperature-responsive supramolecular gel. Using this unique quenching behavior, spatiotemporal photoluminescence patterning was performed for applications to encryption and anticounterfeiting.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in the paper?

Organic-inorganic hybrid solar energy storage materials showing stimuli responsivity.

 

Be sure to read Yoichi’s article, “Photodoping-based broadband photochromism of semiconductor nanocrystals under air operated by a supramolecular gel” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Brandi Cossairt

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Professor Brandi Cossairt (University of Washington, USA) below!

​​

Brandi Cossairt received her B. S. in Chemistry from the California Institute of Technology in 2006. Brandi went on to pursue graduate studies at the Massachusetts Institute of Technology under the guidance of Professor Christopher C. Cummins and was awarded her Ph.D. in 2010. She then continued her academic career as an NIH NRSA Postdoctoral Fellow at Columbia University between 2010 and 2012, working with Professor Jonathan Owen. Brandi joined the Department of Chemistry at the University of Washington as an Assistant Professor in 2012 and is now the Lloyd E. and Florence M. West Endowed Professor. Her research group examines the nucleation, growth, surface chemistry, and reactivity of nanoscale materials to enable next-generation technologies in the diverse areas of displays, lighting, catalysis, quantum information, and hybrid matter. She has received a number of awards for her research, including a Sloan Research Fellowship, a Packard Fellowship, an NSF CAREER Award, a Dreyfus Teacher-Scholar Award, and the National Fresenius Award from the American Chemical Society. Outside of the lab, Brandi is an Associate Editor at the ACS journal Inorganic Chemistry and is the co-founder of the Chemistry Women Mentorship Network (ChemWMN).

 

What is your favourite thing about ChemComm?

I love that ChemComm has maintained the short, 4-page format. It helps authors convey their science in a more concise and impactful way and is also helpful for readers to actually read the whole thing. I also love that it features all type of chemistry and that chemistry is broadly defined and includes highly interdisciplinary work in addition to things that are more squarely in what we would traditionally think of.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

Submission and peer review at ChemComm is quick and seamless. It is really refreshing in comparison with some other systems.

Could you provide a brief summary of your recent ChemComm publication?

Our paper explores how active site ensembles on transition metal phosphides, specifically Ni2P nanocrystals, influence the selectivity of the nitrate reduction reaction (NO3RR). Ammonia, essential for fertilizer production, is typically produced via the Haber-Bosch process, which is energy-intensive and environmentally disruptive. NO3RR, a common pollutant from wastewater treatment and agricultural runoff, offers a sustainable alternative by converting nitrate (NO3⁻) to ammonia (NH3) using electrocatalysis. We demonstrate that Ni2P nanocrystals exhibit near 100% faradaic efficiency for nitrate reduction over hydrogen evolution at -0.4 V, with maximum NH3 selectivity at -0.2 V vs. RHE. We conclude that the selectivity of NO3RR on Ni2P is tunable by adjusting the surface coverage ratio of H* and NOx*, highlighting the importance of active site ensembles in metal phosphide catalysts for selective ammonia production.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

We are really excited about catalyst design moving forward. Diversifying active sites through control of stoichiometry, nanocrystal morphology, and doping will be our main focus.

 

Be sure to read Brandi’s full article, “Ni2P active site ensembles tune electrocatalytic nitrate reduction selectivity” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Shilie Pan

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Professor Shilie Pan (Xinjiang Technical Institute of Physics & Chemistry) below!

​​

  Professor Shilie Pan completed his PhD degree under the supervision of Professor Yicheng Wu (Academician) at the University of Science & Technology of China in 2002. From 2002 to 2004, he was a postdoctoral fellow at the Technical Institute of Physics & Chemistry of CAS in the laboratory of Professor Chuangtian Chen (Academician of CAS). From 2004 to 2007, he was a postdoctoral fellow at Northwestern University in the laboratory of Professor Kenneth R. Poeppelmeier in USA. From 2007, he has been working as a full professor at XTIPC, CAS. His current research interests include the design, synthesis, crystal growth and evaluation of novel optical-electronic functional materials.

 

What is your favourite thing about ChemComm?

Communication manuscripts published in ChemComm are both concise and innovative, providing quick and clear access to much of the latest influential research.

In what ways do you think ChemComm stands out among other journals in your field?

For years, ChemComm has consistently had an excellent reputation in the field of chemistry and are widely recognized in the field. At the same time, its ability to publish quickly gives it a significant advantage in attracting submissions.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The editors have been very fair and professional in their processing of the manuscript, and the reviewers have always made constructive comments and helped us improve the quality of our manuscripts.

Could you provide a brief summary of your recent ChemComm publication?

We synthesized a new deep-ultraviolet optical crystal with KBBF-type structure. Specifically, we successfully synthesized the first chloroaluminoborate by smoothly introducing the innovative AlO3Cl tetrahedra obtained by chlorination of AlO4 tetrahedra into borates.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

Chloroaluminoborate is a completely new system of compounds. I believe that with further exploration, crystallographic noncentrosymmetry chloroaluminoborates can be obtained as deep-ultraviolet nonlinear optical crystals.

 

Be sure to read Professor Pan’s Communication article, “CsAlB3O6Cl: the rational construction of a KBBF-type structure with aligned 2[AlB3O6Cl] layers via introducing unprecedented [AlO3Cl] tetrahedra” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Hamid Arandiyan

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Dr Hamid Arandiyan (RMIT University) below!

​​

Dr. Hamid Arandiyan is a leader of the Critical Minerals for Clean Energy (CMCE) Research Group at the Centre for Advanced Materials and Industrial Chemistry (CAMIC) and a Senior Industry Research Fellow at the School of Science at RMIT University. His research is focused on resource recovery for environmental remediation, energy applications, hydrometallurgy, and solid-state chemistry. He is currently serving as a Fellow of the Royal Society of Chemistry (FRSC) and a Chartered Chemist with the Royal Australian Chemical Institute (MRACI CChem). His publications have received notable recognition from ChemComm, including being featured in the “Pioneering Investigator” series in the ChemComm 60th Anniversary Collection (ChemComm 60, 2024, 5104-5135), highlighted as a “Hot Article” (ChemComm 54, 2018, 6484-6502), and included in the “Emerging Investigator Special Edition” (ChemComm 54, 2018, 6442-6457).

 

How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?

In my experience, ChemComm has significantly evolved over the years, expanding its scope and deepening its impact within the chemical sciences community. I have noticed the journal’s impressive integration of interdisciplinary research, particularly in areas like catalysis, materials science, and environmental science. What stands out to me the most is its increasing focus on emerging areas such as green chemistry, environmental remediation, energy applications, and sustainable materials. ChemComm’s rising reputation for high-quality, rapid communications reflects its ongoing commitment to excellence.

What is your favourite thing about ChemComm?

My favourite thing about ChemComm is its commitment to rapidly broadcasting high-quality research. The journal’s ability to quickly publish cutting-edge findings allows researchers to stay at the forefront of scientific advancements, fostering a dynamic exchange of ideas and innovations. This rapid publication process and its interdisciplinary scope make ChemComm a fundamental platform for sharing impactful discoveries across the chemical sciences.

In what ways do you think ChemComm stands out among other journals in your field?

ChemComm’s format promotes concise and focused articles, making it an ideal platform for reporting breakthrough findings or discoveries in my field, such as heterogeneous catalysis, nanotechnology, functional materials, fundamental catalytic reaction mechanisms, and chemical surface sciences without requiring extensive background or supplementary material. Despite its fast publication times, ChemComm upholds a precise peer-review process, ensuring the high quality of published research.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The peer review process at ChemComm is known for being rigorous and efficient. Reviewers are selected for their expertise and are expected to provide thorough, constructive feedback, ensuring that only high-quality, impactful research is published. The interaction with the editorial team is professional and supportive, with Editors who are responsive and engaged in facilitating a smooth review process. Their commitment to maintaining high standards while ensuring a rapid publication timeline is a hallmark of the journal, making the overall experience both positive and rewarding for authors.

Are there ways in which the journal can further support and engage with future generations of scientists?

I believe there may be opportunities for ChemComm to enhance its support for future scientists, particularly early career researchers (ECRs). Initiatives such as dedicated sections for ECR-led research, mentorship programs, or hosting webinars and workshops on essential topics like scientific writing and career development could be beneficial. Additionally, offering more travel grants or awards for young researchers to present their work at conferences could potentially increase their visibility and networking opportunities.

Could you provide a brief summary of your recent ChemComm publication?

Our recent review paper in ChemComm explores the advancements over the past decade in transition metal (TM)-based electrocatalysts for hydrogen and oxygen evolution reactions in alkaline media. TM-based electrocatalysts have attracted attention due to their high electronic conductivity, tunable valence electron configurations, stability, and cost-effectiveness. While noble metals like Pt, Ir, and Ru show promising performance, their high cost and limited availability restrict their use. Significant progress has been made in designing TM-based catalysts, including alloys, metal oxides, borides, carbides, phosphides, nitrides, and chalcogenides. This review highlights current trends, challenges, and prospects, providing valuable guidance for designing high-performance electrocatalysts for water-splitting applications.

 

Be sure to read Hamid’s Feature article, “Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Hon Wai Lam

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Professor Hon Wai Lam (University of Nottingham) below!

​​​

  Hon Lam obtained an MChem degree in chemistry from the University of Oxford in 1998, and a PhD in organic chemistry in 2001 from the University of Nottingham, where he worked under the supervision of Gerald Pattenden, FRS. During 2002-2003 he was a postdoc with David A. Evans at Harvard University. He began his independent academic career at the School of Chemistry, University of Edinburgh in October 2003 and moved to the School of Chemistry, University of Nottingham in October 2013, where he is currently a Professor of Organic Synthesis. Hon’s research interests are in the development of new reactions and strategies for organic synthesis, for the efficient preparation of valuable building blocks and target compounds.

 

What is your favourite thing about ChemComm?

I have found submitting papers to ChemComm to be a smooth process; the communication with the editors has always been professional, courteous, and fair, and the standard of peer review is high. The team at ChemComm is also very keen to build good relations with authors and reviewers.

Could you provide a brief summary of your recent ChemComm publication?

Morphinan opioids are therapeutically important compounds used in the treatment of pain and other disorders, and several are classified as World Health Organisation Essential Medicines. One subset of morphinan opioids are 14-hydroxy-6-oxomorphinans without an E-ring (lacking a 4,5-ether linkage), and these have been shown to have interesting biological activities. Previously, these compounds have been prepared only through semisynthetic methods using natural product starting materials (mainly through the poppy plant). Our recent ChemComm paper describes a way to prepare these compounds using total synthesis starting from commercially available chemicals. The synthesis is applicable to the synthesis of the non-natural enantiomeric series of morphinans, which is not possible using poppy-derived starting materials. The biological activities of two compounds prepared, 4,5-desoxynaltrexone and 4,5-desoxynaloxone were also measured against the opioid receptors, and were found to be partial agonists.

 

Be sure to read Hon’s open access article, “Enantioselective de novo synthesis of 14-hydroxy-6-oxomorphinans”, to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Shuli You

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Professor Shuli You (Shanghai Institute of Organic Chemistry) below!

​​

How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?

Over the years, ChemComm has expanded to a very broad scope covering all topics in chemistry.

What is your favourite thing about ChemComm?

I am very impressed with the rapid publication process, which allows scientists to share their exciting findings promptly with the scientific community.

In what ways do you think ChemComm stands out among other journals in your field?

ChemComm is a prestigious primary chemistry journal with world-class and professional editorial teams.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The peer review process and interaction with the editorial team at ChemComm are smooth and pleasant.

Are there ways in which the journal can further support and engage with future generations of scientists?

Continuing to support younger researchers by creating special issues featuring early-career researchers and providing them a platform to showcase their work.

Could you provide a brief summary of your recent ChemComm publication?

The C-H alkynylation of 1-aryl isoquinolines with hypervalent iodine-alkyne reagents was realized in the presence of chiral cyclopentadienyl-Rh(III) complex, providing axially chiral alkynylated 1-aryl isoquinolines in excellent yields and enantioselectivity.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

The ongoing research down the road includes the construction of structurally diverse chiral molecules by enantioselective C–H functionalization reactions and their potential applications in organic synthesis.

 

Be sure to read the article, “Rh(iii)-catalyzed atroposelective C–H alkynylation of 1-aryl isoquinolines with hypervalent iodine–alkyne reagents” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Karthikeyan Sekar

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Dr Karthikeyan Sekar (SRM Institute of Science and Technology) below!

​​

Dr. Karthikeyan Sekar currently working as a Research Assistant Professor, at SRM Institute of Science and Technology, India. Visiting Faculty at the University of Edinburg, Scotland, UK and JSPS Invitational Fellow at Kyushu University, Japan. Before joining SRMIST, he worked as Special Researcher at the University of Tokyo. He has received prestigious the Royal Society Newton International alumni grant in this September 2021, and the Japan Society for the Promotion of Science, Japan (2018 to 2020), and the Royal Society Newton International Fellowship at Aston University (2016 to 2018), UK. He has awarded the Fellow of Higher Education Academy, United Kingdom (2018). He has many memberships few namely Member of International Water Association, Member of Royal Society of Chemistry, UK; Member of Member of American Chemical Society, USA; International Academic Partner of Africa Centers of Excellence Project.  His research interest towards development of biomass derived carbon-based materials used as a catalyst for energy and environmental remediation. He has published 129 research articles (Advanced Energy Materials, Applied Catalysis B: Environmental, Journal of Materials Chemistry A, Chemical communications, ChemSusChem, ACS applied Materials & Interfaces, Green Chemistry, PCCP, Langmuir etc., Citation 5360, h-index 36), including four patents (one international), which has transferred many industries in India and abroad.

 

How have you seen ChemComm evolve over the years, and what aspects do you find most noteworthy?

ChemComm has been evolving with the publications dealing with interesting explorations, new findings, and novel research outputs.

What is your favourite thing about ChemComm?

One of the favourite things about ChemComm is, easy submission process, ability to track the status of the submitted manuscript and swift final decision. The ‘communication’ option given for immediate publication of new emergent output is highly appreciative.

In what ways do you think ChemComm stands out among other journals in your field?

The standard of ChemComm lies in the quality of the research that gets published every year irrespective of the different branches in chemistry.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The peer review process is seemingly transparent where the quality of the manuscript is highlighted and modified during the same. The cooperative results from the editorial team along with the reviewers’ opinion is non-negotiable in compliance with the journal standards.

Could you provide a brief summary of your recent ChemComm publication?

In the recent communication, we reported the creation of an interface between the crystalline and amorphous phases of nickel sulfide configuring the electrocatalytic hydrogen evolution reaction rate in an alkaline medium with an enhancement in the intrinsic activity. The intriguing interplay of different phases enabled to achieve an ultra-low overpotential of 15mV to deliver 10 mAcm-2 current density.

 

Be sure to read the article, “Crystalline/amorphous nickel sulfide interface for high current density in alkaline HER: surface and volume confinement matters!” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm’s 60th Anniversary – Nobuhiro Yanai

ChemComm is publishing its 60th volume in 2024. Over the past 60 years, ChemComm has been the RSC’s most cited journal, and one of the most trusted venues for rapid publication of short communications. In our anniversary year, we recognise the important contributions ChemComm has made, and continues to make, in advancing the chemical sciences.

As part of our anniversary celebrations, we’ve brought together a collection featuring the latest research from some of our most loyal and dedicated authors. From those marking the beginning of their independent academic career by publishing their first article with us, to the rising stars and established leaders publishing in our yearly ‘Emerging Investigators’ and ‘Pioneering Investigators’ collections, this collection champions the contributions of our worldwide author community. We are proud many authors choose to support our journal by regularly publishing their best work with us. This collection also features papers from our ChemComm Emerging Investigator Lectureship winners, and our Outstanding Reviewer awardees, whose invaluable feedback has shaped our published content through the years.

To accompany the collection, we’ll be publishing interviews with contributing authors where they provide further insight into their research and reflect on their journey with ChemComm.

Check out our interview with Professor Nobuhiro Yanai (Kyushu University) below!

Nobuhiro Yanai is an Associate Professor in the Department of Applied Chemistry at Kyushu University, Japan. He earned his Ph.D. from Kyoto University in 2011 under Prof. Susumu Kitagawa and Prof. Takashi Uemura on guest properties in metal-organic frameworks. He was a postdoctoral fellow with Prof. Steve Granick at the University of Illinois at Urbana-Champaign, experiencing colloid and soft matter sciences. He joined Kyushu University in 2012. He is currently leading a lab that creates photo-functional materials for photon upconversion, dynamic nuclear polarization, and quantum sensing. He received several awards including The Wiley Young Researcher Award, The Asian and Oceanian Photochemistry Association Prize for Young Scientists, RIGAKU-ACCC Rising Star Award, Award for Young Chemists from Chemical Society of Japan, and Award for Encouragement of Research in Coordination Chemistry from Japan Society of Coordination Chemistry.

 

What is your favourite thing about ChemComm?

Fast, high-quality review process and solid trust from the chemical community.

How would you describe the peer review process and interaction with the editorial team at ChemComm?

The constructive and precise remarks we received during the peer review helped us to further improve the quality of our paper. In addition, the review period was short, so that the first author, Miku, was able to include this paper as an accomplishment in her fellowship application. We are grateful to the excellent reviewers and the editorial team.

Are there ways in which the journal can further support and engage with future generations of scientists?

It is great that the journal is highlighting future generations of researchers as Emerging Investigators. It is a great encouragement to the young scientists to be given presentation awards bearing the journal’s name at conferences. It would be interesting to interview the first author, including video clips, when a particularly excellent paper is published.

Could you provide a brief summary of your recent ChemComm publication?

In our group, we are working on quantum sensing based on metal-organic frameworks (MOFs). In our Chem. Commun. paper, we generated radicals in the ligands of MOFs and found that the quantum coherence of the radicals responds to the guest molecules.

In your opinion, what are the next steps or potential areas of research that could build upon the findings in this paper?

In the future, we aim to construct a library of quantum sensors by combining more diverse MOFs and molecular qubits to realize chemical quantum sensing.

 

Be sure to read the article, “Guest-responsive coherence time of radical qubits in a metal–organic framework” to learn more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Puja Prasad

We are excited to share the success of Puja Prasad’s first-time independent article in ChemComm; “Aggregation-induced emission luminogens for latent fingerprint detection” included in the full milestones collection. 

Read our interview with Puja below.

What are the main areas of research in your lab and what motivated you to take this direction?

Our laboratory is working on the synthesis and applications of metal complexes in biosensing and therapeutics. Presently we are broadly working on three areas: (a) development of metal-based complexes as antibacterial and anticancer agents, (b) design of high-throughput sensor arrays for pathogen identification and antimicrobial susceptibility test, and (c) development of novel luminogens probes having the unique property of aggregation-induced emission (AIE) for the detection of amyloids, metal ions or visualization of latent fingerprinting (LFP), etc.

Cancer and infectious diseases are the leading causes of death worldwide. The development of novel diagnostic and therapeutic agents is essential for the efficient treatment of these diseases. Therefore, we are motivated in designing aggregation-induced emission luminogens (AIEgens) theranostic probes to combat both of these deadly diseases

Can you set this article in a wider context?

Latent fingerprinting (LFP) plays an important role in the identification of individuals mainly in the realm of criminal investigation. Our highlight article has shown the development of AIEgens in the field of LFP detection. AIEgens with opulent photophysical properties, such as large Stokes’ shifts, high quantum yields, long luminescence lifetimes, and high photostability have emerged as potential candidates to provide prima facie evidence of individual identity.

This highlight focuses on the structural design of AIE-active molecules and their interactions involved in LFP detection. In addition, several future perspectives and new strategies have been highlighted for overcoming the limitations associated with AIEgens in LFP visualization. We believe that this “highlight” will help in the rational design of AIE-active molecules and inspire the scientific community to explore the full potential of AIE materials in the field of forensic and biometric sciences.

What do you hope your lab can achieve in the coming year?

In the coming year, our lab would like to explore the application of AIEgens in various biosensing and therapies, and contribute significantly to the scientific community.

Describe your journey to becoming an independent researcher.

The turning point in my life was when I got selected for an integrated Ph.D. program at the Indian Institute of Science (IISc) Bangalore, a highly reputed research institute in India. During my master’s, I became interested in chemical biology and medicinal chemistry. Therefore, I joined Ph.D. in medicinal inorganic chemistry laboratory and worked on design and synthesis of oxovanadium(IV) complexes for the application in photodynamic therapy (PDT) under the supervision of Prof. Akhil R. Chakravarty in the Department of Inorganic and Physical Chemistry, IISc Bangalore, India. After completing my Ph.D. in 2014, I was offered a postdoctoral position at Rutgers University, USA and worked on a nanoparticle-hydrogel composite system for the delivery of anti-inflammatory drugs with Prof. Patrick. J. Sinko. I was awarded a National Postdoctoral Fellowship (NPDF) and CSIR-Senior Research Associate position in 2016 and 2019, respectively, and worked under the mentorship of Prof. Shalini Gupta at the Indian Institute of Technology (IIT) Delhi. At IIT Delhi, I was involved in developing novel platform strategies for targeting, removal and screening of bacterial infections to combat antimicrobial resistance (AMR). In July 2022, I joined as an Assistant Professor at Amity University Uttar Pradesh, Noida.

What is the best piece of advice you have ever been given?

One of the best pieces of advice ever given to me was to “carefully analyze the data after each experiment.”

Why did you choose to publish in ChemComm?

I chose to publish in Chem Comm because it is an internationally recognized and highly reputed journal. Further, Chem Comm has a wide readership with a broad range of influential and diverse fields of audience. This will help to increase the visibility of my group within the scientific community.

​​

  Puja Prasad received her B.Sc. from Calcutta University. She received her M.Sc. and Ph.D. degrees from the Indian Institute of Science Bangalore in 2014 under the supervision of Prof. Akhil R. Chakravarty. She then joined Prof. Patrick J. Sinko’s group, Rutgers University, USA, for her postdoctoral research (2014–2015). Furthermore, she received a prestigious National Postdoctoral Fellowship (2016–2018) and was a CSIR-Senior Research Associate (2019–2022) and worked under the mentorship of Prof. Shalini Gupta, Indian Institute of Technology Delhi. She joined Amity University Uttar Pradesh in the year 2022 as an Assistant Professor. Her research interest includes development of AIEgens for diagnostic and therapeutic applications.

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)