Novel optical trapping of aerosolised inhaler particles

Webwriter Kate Montgomery writes for us about a recent hot article in ChemComm

The inhaler, or pressurised metered-dose inhaler (pMDI), is a well-known medical device commonly used to help people all over the world with conditions such as asthma. However little is known about the form and phase of particles ejected from the inhaler on their route from the inhaler to the lung. It is important to understand the way that the solid particles behave once they are discharged from an inhaler as the size of a particle affects where it is delivered in the respiratory tract, ultimately determining the efficacy of the treatment.

Experimental setup used to trap and study particles discharged from a Salamon® inhaler.

In a collaboration between the University of Cambridge, Imperial College London, the University of Birmingham and the Central Laser Facility in Oxford, Tong et al. have used an optical trap to stably suspend individual particles discharged from a Salamon® inhaler for the first time. After stably trapping the particles the authors were able to determine the phase of the particles by comparing them to both a solid crystalline sample and nebulised aqueous droplets of the drug used in the Salamon® inhaler (salbutamol sulphate). Particles were also trapped and studied after being passed through a humidity chamber designed to mimic the lungs.

When first dispensed from the inhaler the particles had analogous properties to the solid crystalline sample of the drug. As the particles were exposed to a higher humidity they became more spherical as they absorbed water from the environment around them. Particles trapped at a relative humidity >92% had properties very similar to that of nebulised aqueous droplets of the drug. This change in morphology of the particles was confirmed by a combination of Raman spectroscopy and brightfield images.

Tong et al. have been able to show that once released into the body the crystalline particles take up    water, causing the particles to increase in size and sphericity. This information will be of great aid in understanding and improving the efficiency of aerosol-based inhalation products.

To download the full article for free for a limited time* click the link below:

Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI)
H.-J. Tong, C. Fitzgerald, P. J. Gallimore, M. Kalberer, M. K. Kuimova, P. C. Seville, A. D. Ward and F. D. Pope
DOI: 10.1039/c4cc05803h

*Access is through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Boron and beryllium finally shake hands

Jennifer Newton writes about a hot ChemComm article for Chemistry World

The first non-cluster bond between boron and beryllium has been reported by scientists in Germany.

10 years ago, few reactions existed where boron behaved as an nucleophile. That all changed with the advent of lithium diazaborolide in 2006, and boron has been partnering up with myriad main-group, transition metal and lanthanide elements ever since. However, despite beryllium sitting right next to boron in the periodic table, a classical two-centre/two-electron bond had never been reported between the two neighbours, until now.


Read the full article in Chemistry World»

Read the original journal article in ChemComm – it’s free to access until 6th January 2015:
Beryllium bis(diazaborolyl): old neighbors finally shake hands
T. Arnold, H. Braunschweig, W. C. Ewing, T. Kramer, J. Mies and J. K. Schuster  
Chem. Commun., 2015, Advance Article
DOI: 10.1039/C4CC08519A, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot ChemComm articles for November

Here is a selection of the latest referee-recommended articles in ChemComm:

Diffusion of vaporous guests into a seemingly non-porous organic crystal
Simon A. Herbert, Agnieszka Janiak, Praveen K. Thallapally, Jerry L. Atwood and Leonard J. Barbour  
Chem. Commun., 2014,50, 15509-15512
DOI: 10.1039/C4CC07366E, Communication


Azobenzene-based chloride transporters with light-controllable activities
Ye Rin Choi, Gyu Chan Kim, Hae-Geun Jeon, Jinhong Park, Wan Namkung and Kyu-Sung Jeong  
Chem. Commun., 2014,50, 15305-15308
DOI: 10.1039/C4CC07560A, Communication


Fluorescent polymers from non-fluorescent photoreactive monomers
Jan O. Mueller, Dominik Voll, Friedrich G. Schmidt, Guillaume Delaittre and Christopher Barner-Kowollik  
Chem. Commun., 2014,50, 15681-15684
DOI: 10.1039/C4CC07792J, Communication


Is it possible to achieve a complete desaturation of cycloalkanes promoted by o-benzyne?
Francisco Cervantes-Navarro, Abel de Cózar, Fernando P. Cossío, María A. Fernández-Herrera, Gabriel Merino and Israel Fernández  
Chem. Commun., 2015, Advance Article
DOI: 10.1039/C4CC07311H, Communication


Thiol-modified gold nanoparticles for the inhibition of Mycobacterium smegmatis
Jennifer C. Gifford, Jamee Bresee, Carly Jo Carter, Guankui Wang, Roberta J. Melander, Christian Melander and Daniel L. Feldheim  
Chem. Commun., 2014,50, 15860-15863
DOI: 10.1039/C4CC06236A, Communication


Redox-responsive organometallic hydrogels for in situ metal nanoparticle synthesis
B. Zoetebier, M. A. Hempenius and G. J. Vancso  
Chem. Commun., 2015, Advance Article
DOI: 10.1039/C4CC06988A, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Aptamers and gold nanoparticles whisked up to spot influenza

Carla Pegoraro writes about a hot ChemComm article for Chemistry World

Researchers in the UK have developed a new visual bioassay that can detect flu viruses by making them heavier.

Early diagnosis is fundamental to slowing viral outbreaks. The latest (since 2003) outbreak of avian flu from Asia resulted in millions of chickens being culled and, according to the World Health Organization, the death of 393 people. Many laboratory-based tests, such as viral culture assays and the polymer chain reaction (PCR), are incredibly sensitive and accurate. However, they are costly, time consuming and require specialist training, so are unsuitable for transition to the field. It is therefore vital to introduce simple, quick and cheap field tests to control the spread of diseases and guide preventative measures, especially in countries like Vietnam where livestock is still a backyard affair.

Gold nanoparticles are conjugated with aptamers. Binding to the virus forms a gold nanoshell on the viral envelope

 Read the full article in Chemistry World»

Read the original journal article in ChemComm:
Aptamer-based biosensors for the rapid visual detection of flu viruses
T. T. Le, B. Adamiak, D. J. Benton, C. J. Johnson, S. Sharma, R. Fenton, J. W. McCauley, M. Iqbal and A. E. G. Cass  
Chem. Commun., 2014,50, 15533-15536
DOI: 10.1039/C4CC07888H, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Capturing C60 in a Crystalline Copolymer Chain

Since its structural realisation in 1985, C60 has garnered much attention in the chemical world for not only its spherical shape, but also its stability, electronic properties and the ability to do chemistry on its surface.

One such avenue that has proven popular in recent times is the incorporation of C60 into one-, two- and three-dimensional arrays, either covalently or non-covalently, in attempts to control the distribution of the molecules in the solid- or solution-phase.  One problem that arises in the synthesis of these extended frameworks, however, is that there often a large amount of disorder and void space in the structure, so it can be difficult to ascertain with much degree of certainty how these C60 molecules are oriented. This uncertainty can consequentially result in the properties and behaviours of the new materials remaining unidentified.

Now, researchers from the University of California, DavisMarilyn Olmstead and Alan Balch – have shown that coordination chemistry can be used to not only generate polymers that covalently link molecules of functionalised C60 in such a manner that can they can be studied crystallographically, but also that these polymers can be used to capture free C60 and C70.

Initially, polymers of C60 were synthesised through the mono-functionalisation of C60 with a piperazyl group, which, on account of its two tertiary amines, can coordinate in a linear fashion with transition metal ions, in this case rhodium(II) acetate. Upon the combination of these two components, a linear one-dimensional polymer was formed, in which it could be seen crystallographically that the C60 moieties were positioned on alternating sides of the polymer chain. These polymer chains were further found to extend into two dimensions through the interdigitation of neighbouring chains in a zipper-like fashion. C60-Rh(II) polymers can capture free C60

Perhaps more interestingly is that when these polymer chains were synthesised in the presence of either C60 or C70, free molecules of C60 or C70 were seen to occupy the void spaces between the C60 molecules of the polymer. Additionally, if a mixture of C60 and C70 was present in the polymer synthesis, it was observed that only C60 was captured by the polymer, most likely as a result of a better geometric match between the polymer and the spherical C60 in preference to the more elongated shape of C70.

This work elegantly demonstrates the generation of not only a self-assembling C60-containing polymer that can be characterised structurally in the solid state, but of one  that can entrap free molecules of C60 selectively over molecules of C70. Based on the properties of free C60 and transition metal complexes, the electronic and chromophoric properties of such a crystalline system could also be expected to offer some noteworthy results.

Read this HOT ChemComm article in full!

Zipping up fullerenes into polymers using rhodium(II) acetate dimer and N(CH2CH2)2NC60 as building blocks
Amineh Aghabali, Marilyn M. Olmstead and Alan L. Balch
Chem. Commun., 2014, Advance Article.
DOI: 10.1039/C4CC06995A

Biography

Anthea Blackburn is a guest web writer for Chemical Communications. Anthea is a graduate student hailing from New Zealand, studying at Northwestern University in the US under the tutelage of Prof. Fraser Stoddart (a Scot), where she is exploiting supramolecular chemistry to develop multidimensional systems and study the emergent properties that arise in these superstructures. When time and money allow, she is ambitiously attempting to visit all 50 US states before graduation.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Associate Editor Jonathan Sessler to receive the 2014 MSMLG Award

ChemComm warmly congratulates Associate Editor Jonathan Sessler, who will receive the 2014 MSMLG Award at the 4th International Conference on Molecular Sensors and Molecular Logic Gates (MSMLG2014), to be held in Shanghai, China, from 9-12th November.

Professor Jonathan Sessler
Professor Sessler, of the University of Texas at Austin, is to be recognized for his seminal contributions to colorimetric anion, cation, and neutral substrate sensors, as well as for his work on calixpyrrole-based self-assembly and molecular logic device design.

Professor Seiji Shinkai
The MSMLG Award will also be presented to Professor Seiji ShinkaiChemComm sends sincere congratulations! Professor Shinkai, of Kyushu University, Japan, designed the first molecular machines and played an integral part in the development of various functional calixarenes.  We invite you to check out our recent cross-journal collection of articles – including a good number from ChemComm – especially published in celebration of Seiji Shinkai’s 70th Birthday.

MSMLG2014
The International Conference on Molecular Sensors and Molecular Logic Gates is a biennial conference organized by the East China University of Science and Technology (ECUST). Over 350 delegates from 25 countries are expected to attend. They will discuss innovative research and development in the fields of molecular sensors and molecular logic gates, molecular recognition and supramolecular self-assembly, and related research areas.

The Royal Society of Chemistry is a proud supporter of MSMLG 2014, sponsoring two poster prizes, the winners of which will each receive a hardbound copy of ‘Molecular Logic-based Computation’ from the RSC Books list.

For more information on the conference and to see the line-up of speakers, visit http://www.msmlg2014.org/.

Look out for ChemComm’s upcoming themed collection on Molecular Logic Gates and Information Processing in early 2015!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Bubble power: Driving self-propelled machines with acetylene bubbles

Iain Larmour is a guest web writer for ChemSci. He has researched a wide variety of topics during his years in the lab including nanostructured surfaces for water repellency and developing nanoparticle systems for bioanalysis by surface enhanced optical spectroscopies. He currently works in science management. In his spare time he enjoys reading, photography, art and inventing.

Self-propelled micro/nanomachines were once the thing of science-fiction, but as so often is the case, fiction has become reality in recent years. Such devices could in the future find uses in environmental remediation and biomedical applications. Researchers around the world have been making progress on designing these machines, and it is a novel fuel-free autonomous self-propelled motor which is the focus of this Chemical Communication by Martin Pumera and team from the School of Physical and Mathematical Sciences at Nanyang Technological University.

Rather than focus on oxygen bubble propulsion, which often requires the use of high levels of toxic hydrogen peroxide, they have developed an acetylene bubble based motor. To achieve this they utilised the reaction of water and calcium carbide, which produces acetylene and calcium hydroxide. This approach makes use of the water that will be found in the most common application environments, but does not require reactive metals such as magnesium and aluminium. The work expands the scope of bubble-propulsion beyond hydrogen and oxygen and gives designers of micro/nanomachines greater power unit choices in their designs.

Acetylene bubble powered motor in water.

The most important part of the research reported in this Communication is the optimisation of an encapsulation layer around the calcium carbide to control the reaction. However, to find out what this layer is made of and how to prepare it you will have to read the article today.

To read the details, check out the Chem Comm article in full:

Acetylene bubble-powered autonomous capsules: towards in situ fuel
James Guo Sheng Moo, Hong Wang and Martin Pumera
Chem. Commun., 2014, 50, Advance Article
DOI: 10.1039/C4CC07218A
   

    

    

    

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Emerging Investigator Lectureship 2015 – nominations open

Deadline for nominations: 8th December 2014 – nominate now!

We are delighted to invite nominations for ChemComm Emerging Investigator Lectureship 2015. The Lectureship, which is awarded annually, will recognise an emerging scientist in the early stages of their independent academic career.

To qualify
To be eligible for the ChemComm Emerging Investigator Lectureship, the candidate should have completed their PhD on or after 4th September 2006. The candidate should also have published at least one article in ChemComm during the course of their independent career.

Lectureship details
The recipient of the Lectureship will be invited to present a lecture at three different locations over a 12 month period. It is expected that at least one of the locations will be a conference. The recipient will receive a contribution of £1500 towards travel and accommodation costs. S/he will also be presented with a certificate and be asked to contribute a ChemComm Feature Article.

Nominations
Those wishing to make a nomination should send the following details to the ChemComm Editorial Office by Monday 8th December 2014:

  • Recommendation letter, including the name, contact details and website URL of the nominee.
  • A one page CV for the nominee, including their date of birth, summary of education and career, list of up to five independent publications, total numbers of publications and patents and other indicators of esteem and evidence of independence.
  • A copy of the candidate’s best publication to date (as judged by the nominator).
  • Two supporting letters of recommendation from two independent referees. These should not be someone from the same institution or the candidate’s post doc or PhD supervisor.

The nominator and independent referees are requested to comment on the candidate’s presenting skills.

Please note that self nomination is not permitted.

Selection procedure
The ChemComm Editorial Board will draw up a short-list of candidates based on the information provided by the referees and nominator. Short-listed candidates will be asked to provide a supporting statement justifying why they deserve the Lectureship. The recipients of the Lectureship will then be selected and endorsed by the ChemComm Editorial Board, and will be announced in Spring 2015.

Previous winners

2014 Xinliang Feng Xinliang Feng (Technische Universität Dresden, Germany) for advanced organic materials
2014 Tomislav Friscic Tomislav Friščić (McGill University, Canada) for organic chemistry
2014 Simon Humphrey Simon M. Humphrey (University of Texas, USA) for inorganic chemistry
2013 Louise A. Berben (University of California Davis, USA) for synthetic and physical inorganic chemistry
2013 Marina Kuimova (Imperial College London, UK) for biophysical chemistry
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nominations open for the Cram Lehn Pedersen Prize in Supramolecular Chemistry 2015

Apply by 31st December 2014

Nominations are now open for the Cram Lehn Pedersen Prize in Supramolecular Chemistry. The prize, sponsored by ChemComm, is organised by the committee of the International Symposium on Macrocyclic and Supramolecular Chemistry and is awarded each year to a young supramolecular chemist.

The Cram Lehn Pedersen Prize is named in honour of the winners of the 1987 Nobel Prize in Chemistry and recognizes significant original and independent work in supramolecular chemistry. Previous winners include Oren Schermann, Tomoki Ogoshi, and Jonathan Nitschke.

The Prize
The winner will receive:

  • £2000
  • free registration for the ISMSC meeting in Strasbourg, France
  • the opportunity to give a lecture at the ISMSC as well as undertake a short lecture tour after the meeting, in consultation with the Editor of ChemComm

Eligibility
To be eligible for the award you must be within 10 years of receiving your PhD on 31st December 2014

Nomination Instructions
You may nominate yourself or someone else. Please send CV, list of publications (divided into publications from PhD and postdoc and publications from independent work), and, if desired, a letter of support to Prof. Roger Harrison (ISMSC Secretary) at rgharris@chem.byu.edu by 31st December 2014

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Just Mix – Zeolitic Imidazolate Framework Synthesis

Iain Larmour is a guest web writer for ChemSci. He has researched a wide variety of topics during his years in the lab including nanostructured surfaces for water repellency and developing nanoparticle systems for bioanalysis by surface enhanced optical spectroscopies. He currently works in science management. In his spare time he enjoys reading, photography, art and inventing.

Zeolitic-imidazolate frameworks (ZIFs) are a sub-class of metal-organic frameworks (MOFs) with a wide range of potential uses including: CO2 capture, storage, catalysis, sensing and biomedicine. Unfortunately their synthesis often requires additives or reaction activation, and if they can be made without these it often requires long reaction times or results in low yields, neither of which is ideal for a substance with such wide potential uses.

To overcome this bottleneck in ZIF synthesis, Roland Fischer and his team from the Inorganic Chemistry department in Ruhr Universitat Bochum in Germany have developed a rapid room temperature synthesis approach. I am a great believer in developing approaches that can be carried out at room temperature and pressure and this is one such elegant solution. The authors produce nanocrystals of ZIFs in a very narrow size distribution by careful selection of the precursors and the solvents they are dissolved in. The solutions are then mixed and stirred to create the ZIF crystals; it really is that elegant.

ZIF crystals showing very narrow size distribution

The authors then used these crystals to fabricate thin films on quartz crystal microbalances and used this device to detect volatile organic solvents. This demonstration leads the way into exploring other uses of these ZIFs – after all, they can now be easily made. But to find out which solvent and precursors you need to use, you’ll have to read the paper today!

To read the details, check out the ChemComm article in full:
Rapid room temperature synthesis of zeolitic-imidazolate framework (ZIF) nanocrystals
Min Tu, Christian Wiktor, Christoph Rosler and Roland Fischer
Chem. Commun., 2014, 50, 13258-13260
DOI: 10.1039/C4CC06491G  

    

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)