In celebration of the 2015 Nobel Prize in Chemistry

The 2015 Nobel Prize in Chemistry was jointly awarded to  Tomas Lindahl, former director of Cancer Research UK’s Clare Hall Laboratories, Paul Modrich from Duke University in the US and Aziz Sancar from the University of North Carolina in the US  for their  “mechanistic studies of DNA repair”.

nobel laureates
Tomas Lindahl, Paul Modrich and Aziz Sancar © Inserm-P. Latron, Mary Schwalm/AP/Press Association, Max Englund/UNC School of Medicine.

Tomas Lindahl’s research pieced together a molecular image of how base excision repairs DNA when a base of a nucleotide is damaged and subsequently managed to recreate the human repair process in vitro. The mechanism known as nucleotide excision repair, which excises damage from UV and carcinogenic substances, was then mapped by Aziz Sancar – the molecular details of this process changed the entire research field. Paul Modrich also studied the human version of the repair system. His work focused on DNA mismatch repair, a natural process which corrects mismatches that occur when DNA is copied during cell division.

The research carried out by the three 2015 Nobel Laureates in Chemistry has not only revolutionised our knowledge of how we function but also lead to the development of life – saving treatments. To celebrate these remarkable achievements, we are delighted to present a collection of recent Chemical Communications, Chemical Science and Chemical Society Reviews articles on DNA repair, FREE to read until 1 December 2015!

We invite you to submit your best research related to DNA repair mechanisms to Chemical Communications, Chemical Science and Chemical Society Reviews!


Reviews

Finding needles in a basestack: recognition of mismatched base pairs in DNA by small molecules
Anton Granzhan, Naoko Kotera and  Marie-Paule Teulade-Fichou
Chem. Soc. Rev., 2014, 43, 3630-3665
DOI: 10.1039/C3CS60455


The chemical biology of sirtuins
Bing Chen, Wenwen Zang, Juan Wang, Yajun Huang, Yanhua He,  Lingling Yan,  Jiajia Liu and Weiping Zheng
Chem. Soc. Rev., 2015, 44, 5246-5264
DOI: 10.1039/C4CS00373J


Luminescent oligonucleotide-based detection of enzymes involved with DNA repair
Chung-Hang Leung, Hai-Jing Zhong, Hong-Zhang He, Lihua Lu, Daniel Shiu-Hin Chan and Dik-Lung Ma
Chem. Sci., 2013, 4, 3781-3795
DOI: 10.1039/C3SC51228B


 

 

Research articles

A label-free and sensitive fluorescent method for the detection of uracil-DNA glycosylase activity
Jing Tao, Panshu Song, Yusuke Sato, Seiichi Nishizawa, Norio Teramae, Aijun Tong  and Yu Xiang
Chem. Commun., 2015, 51, 929-932
DOI: 10.1039/C4CC06170E


DNA-mediated supercharged fluorescent protein/graphene oxide interaction for label-free fluorescence assay of base excision repair enzyme activity
Zhen Wang, Yong Li, Lijun Li, Daiqi Li, Yan Huang, Zhou Nie and Shouzhuo Yao
Chem. Commun., 2015, 51, 13373-13376
DOI: 10.1039/C5CC04759E


A fluorescent G-quadruplex probe for the assay of base excision repair enzyme activity
Chang Yeol Lee, Ki Soo Park and Hyun Gyu Park
Chem. Commun., 2015, 51, 13744-13747
DOI: 10.1039/C5CC05010C


A chemical probe targets DNA 5-formylcytosine sites and inhibits TDG excision, polymerases bypass, and gene expression
Liang Xu, Ying-Chu Chen, Satoshi Nakajima, Jenny Chong, Lanfeng Wang,  Li Lan, Chao Zhang and  Dong Wang
Chem. Sci., 2014, 5, 567-574
DOI: 10.1039/C3SC51849C


Sensitive detection of polynucleotide kinase using rolling circle amplification-induced chemiluminescence
Wei Tang, Guichi Zhu and Chun-yang Zhang
Chem. Commun., 2014, 50, 4733-4735
DOI: 10.1039/C4CC00256C


Rescuing DNA repair activity by rewiring the H-atom transfer pathway in the radical SAM enzyme, spore photoproduct lyase
Alhosna Benjdia, Korbinian Heil, Andreas Winkler, Thomas Carell and Ilme Schlichting
Chem. Commun., 2014, 50, 14201-14204
DOI: 10.1039/C4CC05158K


Expanding DNAzyme functionality through enzyme cascades with applications in single nucleotide repair and tunable DNA-directedassembly of nanomaterials
Yu Xiang, Zidong Wang, Hang Xing and  Yi Lu
Chem. Sci., 2013, 4, 398-404
DOI: 10.1039/C2SC20763J


Detection of base excision repair enzyme activity using a luminescent G-quadruplex selective switch-on probe
Ka-Ho Leung, Hong-Zhang He, Victor Pui-Yan Ma, Hai-Jing Zhong, Daniel Shiu-Hin Chan,  Jun Zhou,  Jean-Louis Mergny, Chung-Hang Leung and  Dik-Lung Ma
Chem. Commun., 2013, 49, 5630-5632
DOI: 10.1039/C3CC41129J


Endonuclease IV discriminates mismatches next to the apurinic/apyrimidinic site in DNA strands: constructing DNA sensing platforms with extremely high selectivity
Xianjin Xiao, Yang Liu and  Meiping Zhao
Chem. Commun., 2013, 49, 2819-2821
DOI: 10.1039/C3CC40902C


Also of interest: Find out more about the three Chemistry Nobel Laureates and their research.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot ChemComm articles for October

Take a look at this selection of recently published referee-recommended articles – all are free to read* until 23 November.

Paper-based plasticizer-free sodium ion-selective sensor with camera phone as a detector
Xuewei Wang, Yu Qin and Mark E. Meyerhoff
DOI: 10.1039/C5CC06770G, Communication

C5CC06770G GA


Soil as an inexhaustible and high-performance anode material for Li-ion batteries
Xiaofei Hu, Kai Zhang, Liang Cong, Fangyi Cheng and Jun Chen
DOI: 10.1039/C5CC06394A, Communication

C5CC06394A GA


Spontaneous mirror symmetry breaking in a re-entrant isotropic liquid
Christian Dressel, Wolfgang Weissflog and Carsten Tschierske
DOI: 10.1039/C5CC06843F, Communication

C5CC06843F GA


Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes
Kenji Kakiage, Yohei Aoyama, Toru Yano, Keiji Oya, Jun-ichi Fujisawa and Minoru Hanaya
DOI: 10.1039/C5CC06759F, Communication

C5CC06759F GA


Catalytic C–H bond functionalisation chemistry: the case for quasi-heterogeneous catalysis
Alan J. Reay and Ian J. S. Fairlamb
DOI: 10.1039/C5CC06980G, Feature Article

C5CC06980G GA


Space Science Applications for Conducting Polymer Particles: Synthetic Mimics for Cosmic Dust and Micrometeorites
Lee A Fielding, Jon K Hillier, Mark J Burchell and Steven P Armes
DOI: 10.1039/C5CC07405C, Feature Article

 

*Access is free through a registered RSC account

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Incorporating DNA hydrogels into enzymatic biofuel cells

Iain Larmour is a guest web writer for ChemSci. He has researched a wide variety of topics during his years in the lab including nanostructured surfaces for water repellency and developing nanoparticle systems for bioanalysis by surface enhanced optical spectroscopies. He currently works in science management. In his spare time he enjoys reading, photography, art and inventing.

I remember a time when mobile phones weren’t so power hungry, and when my phone could go a week on one charge. Admittedly, that was before it had a colour screen, internet connectivity and a hundred other bells and whistles. Increased device connectivity, in particular, has led to a huge increase in power demands and the need for better battery technology.

Wouldn’t it be marvellous if your phone battery generated its power from a wide selection of renewable sources? Khiem Van Nguyen and Shelly Minteer from the University of Utah look toward this possibility in their most recent ChemComm, which describes the use of DNA hydrogels in the production of an enzymatic biofuel cell.

The authors describe how they used the self-assembly of DNA monomers under physiological conditions to form a DNA hydrogel capable of trapping glucose oxidase, the most widely used enzyme in enzymatic biofuel cells. This DNA hydrogel remains permeable to small molecules, such as the battery fuel, whilst successfully trapping the enzyme close to the electrode surface.  Enzyme immobilization on the electrode surface is critical to achieve an effective enzymatic biofuel cell, and this model biobattery was shown to have a similar performance to previously reportedglucose oxidase biofuel cells.

Entrapment of glucose oxidase in DNA hydrogel

With enzymes capable of oxidising a wide range of fuels, from alcohols and carbohydrates to amino acids, it may not be too long until a multi-enzyme biobattery is created that can be powered by the sweat from your skin. Then you’ll be able to browse the internet wherever and whenever you want…provided you have signal, of course.

To read the details, check out the ChemComm article in full:
Investigating DNA hydrogels as a new biomaterial for enzyme immobilization in biobatteries
Khiem Van Nguyen and Shelley D Minteer
Chem. Commun., 2015, 51, Advance Article
DOI: 10.1039/C5CC04810A

For example: S. Aquino Neto et al., Power Sources, 2015, 285, 493–498

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hotter and hotter: increasing the potential of gold nanostars

Iain Larmour is a guest web writer for ChemSci. He has researched a wide variety of topics during his years in the lab including nanostructured surfaces for water repellency and developing nanoparticle systems for bioanalysis by surface enhanced optical spectroscopies. He currently works in science management. In his spare time he enjoys reading, photography, art and inventing.

Gold nanostars are gold nanoparticles with multiple branches, a shape which gives rise to their unique properties. These nanoparticles have tuneable localized surface plasmon resonances in the biologically transparent near-IR window, and excitation of these plasmons using a laser creates a local temperature  increase. For this reason, gold nanostars have potential for use in non-invasive antitumoral and antibiofilm laser treatments.

The problem faced by scientists, however, is how to achieve a temperature increase that is large enough to be effective, without exposing the overlying skin to a level of irradiation that exceeds the safe limits. This is what Piersandro Pallavicini from the Department of Chemistry at the University of Pavia, and an international team of colleagues, set out to investigate.

They generated gold nanostars with plasmon resonances at 835 and 1530 nm, respectively. Each of these plasmons could be irradiated separately, leading to observable increases in temperature. However, when both plasmons were irradiated simultaneously, the temperature increase was equal to the sum of the temperature increases when the plasmons were irradiated separately.

Temperature increases observed from the laser excitation of individual or multiple plasmon resonances of gold nanostars

The implication of these findings is that Pallavicini and colleagues successfully found a way to obtain a larger local temperature increase using irradiation that remains below the safe limits. This significantly increases the potential of gold nanostars for application in the in the treatment of biofilm growth on implants in vivo.

To find out the full details of the additive temperature effect, read the ChemComm article today – it’s free to access until 21st October 2015:

Monolayers of gold nanostars with two near-IR LSPRs capable of additive photothermal response
Piersandro Pallavicini, Simone Basile, Giuseppe Chirico, Giacomo Dacarro, Laura D’Alfonso, Alice Dona, Maddalena Patrini, Andrea Falqui, Laura Sironi and Angelo Taglietti
Chem. Commun., 2015, 51, 12928-12930
DOI: 10.1039/C5CC04144A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Connecting electrodes with light illuminates electrochemistry

Danielle Whittaker writes about a hot Chemical Science article for Chemistry World

Scientists in Australia have lit the path towards replacing wires in electrochemical devices by using visible light to create electrical currents on a stabilised silicon semiconductor electrode.

Electrodes in conventional devices must be connected to an external electrical circuit, often requiring a mesh of wires and bonding pads to produce an array of independently controlled electrodes. These components take up a vast amount of space on electronic chips, limiting the electrode density. Read the full article in Chemistry World»


You can read the original journal article in Chemical Science:
Connecting electrodes with light: one wire, many electrodes
Moinul H. Choudhury, Simone Ciampi, Ying Yang, Roya Tavallaie, Ying Zhu, Leila Zarei, Vinicius R. Gonçales and J. Justin Gooding
DOI: 10.1039/C5SC03011K, Edge Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Announcing the ChemComm Emerging Investigator Issue 2016

We are delighted to announce the forthcoming 2016 ChemComm Emerging Investigators issue. This special issue, now in its sixth year, will showcase the high quality research being carried out by international researchers in the early stages of their independent careers.

If you are interested in submitting to the issue please contact the ChemComm Editorial Office in the first instance. Please note that authors must not have featured in a previous ChemComm Emerging Investigators issue. The deadline for submission is 18 January 2016.

This annual issue is dedicated to profiling the very best research from scientists in the early stages of their independent careers from across the chemical sciences. We hope to feature principal investigators whose work has the potential to influence future directions in science or result in new and exciting developments.

C5CC90126JAlso of interest:

Browse the 2015 Emerging Investigators issue

Find out more about the winners of the recent ChemComm Emerging Investigator Lectureship – awarded annually to exceptional scientists in the early stage of their independent career

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Electric switch makes helix change hands

Elisabeth Ratcliffe writes about a hot ChemComm article for Chemistry World

Electric fields can switch both the net dipole moment and the helical handedness of helical supramolecular structures, according to a theoretical study by scientists in India.

Benzene-1,3,5-tricarboxamide (BTA) molecules self-assemble, by hydrogen bonding, into columnar structures with a macrodipole moment along their stacking direction. Each BTA molecule can form three hydrogen bonds by using oxygen atoms in the amide groups and the direction of these hydrogen bonds determines the direction of the dipole moment. Read the full article in Chemistry World»

Application of an electric field in the direction opposite to that of the macrodipole reverses the handedness of the structure


You can read the original journal article in ChemComm – it’s free to download until 14 October 2015:
External electric field reverses helical handedness of a supramolecular columnar stack
Karteek K. Bejagam, Chidambar Kulkarni, Subi J. George and Sundaram Balasubramanian�
DOI: 10.1039/C5CC05569E, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Emerging Investigator Lectureship 2015: Winners and lectures announced

On behalf of the ChemComm Editorial Board, we are delighted to announce the winners of the 2015 ChemComm Emerging Investigator Lectureship: Deanna D’Alessandro (synthetic inorganic chemistry and molecular materials), University of Sydney, Australia, and Yong Sheng Zhao (organic nanophotonic materials), Institute of Chemistry, Chinese Academy of Sciences, China. Congratulations to Deanna and Yong Sheng!

Yong Sheng Zhao

Yong Sheng Zhao

Yong Sheng kicked off his Lectureship tour at the Asian Pacific Conference on Chemistry of Materials (APCCOM) 2015 on 20 August, followed by a presentation at the 6th International Conference on Nanoscience and Technology (ChinaNANO 2015) on 04 September, both events located in Beijing. His tour will culminate at the Royal Society of Chemistry’s 2nd Asian-European Symposium on Organic Optoelectronics on 27-29 October 2015 in Edinburgh, where he will be awarded with his official Lectureship certificate.

Deanne DAlessandro

Deanna D'Alessandro

Deanna will deliver her inaugural ChemComm EMI Lecture at a symposium on Metal-Organic Frameworks: Synthesis, Properties and Applications at Pacifichem 2015 in Hawaii this December. Further details of her Lectureship tour, including additional lecture locations, will be announced in due course.

This annual lectureship recognises an emerging scientist in the early stages of their independent academic career. For information on previous winners see our website.

Also of interest: You can now read the 2015 ChemComm Emerging Investigators Issue which highlights research from outstanding up-and-coming scientists. There is a mix of Feature articles and Communications, as well as a Profile of this year’s contributors, with cool photos to spotlight our authors at work or at play – look out for the famed Faraday Loving Cup, some serious curling, the Great Wall of China, and once again, as last year, a pumpkin is involved!  You can also take a look at our previous Emerging Investigator issues in 2011, 2012, 2013, and 2014.

Yong Sheng Zhao presents his first ChemComm EMI Lecture at the APCCOM 2015 in Beijing

Soon to come: We will soon be launching our forthcoming 2016 ChemComm Emerging Investigators issue – watch this space for more details.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hot ChemComm articles for September

Take a look at this selection of recently published referee-recommended articles – all are free to read* until the end of September.

Solid electrolyte interphase in semi-solid flow batteries: a wolf in sheep’s clothing
E. Ventosa, G. Zampardi, C. Flox, F. La Mantia, W. Schuhmann and J. R. Morante 
DOI: 10.1039/C5CC04767F, Communication

C5CC04767F GA


A new label-free strategy for a highly efficient chemiluminescence immunoassay
Zhanjun Yang, Yue Cao, Juan Li, Juntao Wang, Dan Du, Xiaoya Hu and Yuehe Lin 
DOI: 10.1039/C5CC05337D, Communication

C5CC05337D GA


A luminescent ruthenium(II) complex for light-triggered drug release and live cell imaging
Nora Karaoun and Anna K. Renfrew 
DOI: 10.1039/C5CC05172J, Communication

C5CC05172J GA


Tuning the properties of the UiO-66 metal organic framework by Ce substitution
Farid Nouar, Matthew I. Breeze, Betiana C. Campo, Alexandre Vimont, Guillaume Clet, Marco Daturi, Thomas Devic, Richard I. Walton and Christian Serre 
DOI: 10.1039/C5CC05072C, Communication

C5CC05072C GA


Biologically inspired non-heme iron-catalysts for asymmetric epoxidation; design principles and perspectives
Olaf Cussó, Xavi Ribas and Miquel Costas 
DOI: 10.1039/C5CC05576H, Feature Article

C5CC05576H GA


Confined chromophores in tobacco mosaic virus to mimic green fluorescent protein
Quan Zhou, Fengchi Wu, Man Wu, Ye Tian and Zhongwei Niu 
DOI: 10.1039/C5CC05751E, Communication

C5CC05751E GA 

*Access is free through a registered RSC account

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Synthetic stomach membrane to minimise animal tests

Jennifer Newton writes about a hot ChemComm article for Chemistry World

The hydrogel successfully mimiced porcine gastric mucosa in mucoadhesion testing experiments

Scientists in the UK have made a synthetic surface that could replace animal tissues in liquid drug formulation tests.

‘Mucosal membranes like those in the nasal cavity, mouth, eyes, stomach, bladder and vagina are continuously being washed with biological fluids. The majority of drugs administered to these surfaces will get washed away, reducing drug absorption and efficiency of any therapy,’ explains Vitaliy Khutoryanskiy, from the University of Reading, who led the work. Read the full article in Chemistry World»


Read the original journal article in ChemComm – it’s open access:
Novel glycopolymer hydrogels as mucosa-mimetic materials to reduce animal testing
Michael T. Cook, Sarah L. Smith and Vitaliy V. Khutoryanskiy 
Chem. Commun., 2015, Advance Article
DOI: 10.1039/C5CC02428E, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)