ChemComm Milestones – Brian Lindley

Brian Lindley has reached an exciting ChemComm Milestone when he published his first independent research article in our journal. You can read Brian’s #ChemComm1st article here: ‘Unlocking metal coordination of diborylamides through ring constraints‘ Find out more about Brian in our interview with him below.

 

What are the main areas of research in your lab and what motivated you to take this direction?

The central aim of my research group is to explore the cooperative action of boronic ligands and 1st-row transition metals within the context of catalysis. In this research, I draw on the demonstrated versatility of metal-ligand cooperativity as a design element for enabling a broad range of stoichiometric and catalytic transformations. Inspired by the work of others who have successfully integrated the benefits of transition metal and main group chemistry, I set out to expand the chemical diversity of boron-containing ligand architectures for applications ranging from organic synthesis to energy conversion.

Can you set this article in a wider context?

Metal-ligand cooperativity is a compelling strategy for lowering barriers to chemical reactions, e.g. by having both the metal and ligand play active roles in bond-making and bond-breaking processes. This reduces the burden on the transition metal center, often providing distinct advantages over traditional inorganic reaction mechanisms. We are interested in further exploring this principle by synthesizing ligands featuring boron functionalities proximate to the transition metal binding site. We aim to exploit this strategic placement of Lewis acidic boranes for metal-boron cooperative reactivity. In this article, we synthesize a cyclic diborylamide ligand and explore its coordination chemistry with lithium and iron. This new ligand features two boron substituents adjacent the nitrogen donor atom, thus potentially serving as useful classes of ligands for future metal-ligand cooperative applications.

What do you hope your lab can achieve in the coming year?

In 2022, we aim to probe the effect of boron substitution on the bonding and reactivity of these new cyclic diborylamide compounds. Beyond the diborylamide project, we also hope to disclose our first findings in two distinct research projects that also center on the coordination chemistry of boron-containing ligands with transition metals.

Describe your journey to becoming an independent researcher.

Though I admittedly teetered between chemistry and chemical engineering as an undergraduate, my research experience with Prof. Rich Eisenberg at the University of Rochester inspired me to pursue a career in inorganic chemistry. Rich also provided invaluable guidance on the graduate school application process, which ultimately led me to join Prof. Pete Wolczanski’s group at Cornell. The environment provided by Pete and his talented group of graduate students allowed me to think creatively about synthetic inorganic chemistry, thus laying the foundation for my independent career. I was fortunate to be offered a postdoctoral researcher position in Prof. Alex Miller’s group at UNC-Chapel Hill, where I matured as a scientist and expanded my skillset to include electrochemical methods. Motivated by these experiences, which also fostered my passion for teaching and mentoring students, I decided to pursue my own independent career to explore new frontiers in transition metal and main group chemistry.

What is the best piece of advice you have ever been given?

The best advice I’ve received is probably to believe in my ideas. Though often easier said than done, this guidance is comforting, particularly when research is progressing slowly.

Why did you choose to publish in ChemComm?

ChemComm covers a broad range of research topics including fundamental advancements in main group and transition metal chemistry, thus making the journal a perfect fit for the present research article.

 

 

Brian M. Lindley received his BS in Chemistry in 2010 from the University of Rochester, where his research in Prof. Rich Eisenberg’s lab centered on the synthesis of organic chromophores for light-driven, cobalt-catalyzed hydrogen evolution. Brian went on to receive his PhD in Chemistry in 2016 from Cornell University, where he studied metal-templated carbon-carbon bond forming reactions and Fe(IV) alkylidenes under the tutelage of Prof. Pete Wolczanski. Brian spent the next 3.5 years as a postdoctoral researcher in Prof. Alex Miller’s group at UNC-Chapel Hill, where he studied the fundamental steps in a proposed electrochemical dinitrogen reduction scheme. In 2019, Brian joined the Department of Chemistry & Biochemistry at Baylor University as an assistant professor. Research in the Lindley Lab is centered on the development of fundamentally new classes of ligands for applications in 1st-row transition metal catalysis.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Imogen Riddell

We recently caught up with Imogen Riddell (University of Manchester) – our latest ChemComm Milestones author. We wanted to find out about Imogen’s research and experiences as a first-time author in the interview below. You can now read Imogen’s first independent research paper ‘Self-assembly of a trigonal bipyramidal architecture with stabilisation of iron in three spin states‘ in our growing ChemComm1st collection.

Our interview with Imogen

What are the main areas of research in your lab and what motivated you to take this direction?
I believe that research can be placed on a spectrum which spans fundamental research to application science, and I have been fortunate enough to get experience of both ends. My PhD research was focused on the fundamental science of self-assembling metal-organic systems, whereas my postdoctoral work at MIT focused on the application of metal complexes in cancer treatment. Now I run my own group, I aim to take the best of each approach and have focused on developing novel self-assembling metal-organic systems with targeted applications in catalysis, bio-imaging and molecular stabilisation.

Can you set this article in a wider context?
Nature has a knack for successfully exploiting metals for both structural and catalytic purposes, however the scientific community has yet to develop the same level of mastery. Recently, the supramolecular community has become skilled at using metals as structure-directing agents, but unfortunately, current strategies have left the metal unavailable for further reactivity; effectively inhibiting the potential for catalytic activity.

A first step to overcoming this is to understand how to control the spin states of metal ions in complex architectures. In our paper, we demonstrate the incorporation of iron ions in three different spin states within a single molecule, illustrating how relatively simple starting materials can generate highly sophisticated molecules with potentially interesting properties.

What do you hope your lab can achieve in the coming year?
Currently work in my lab is looking at systematically understanding how we can exploit asymmetry within ligands to generate supramolecular cages with complex, yet controllable, three-dimensional structures. We are hoping to build on the understanding we have gained from the work described in this paper to demonstrate applications for these structures ranging from stabilisation of catalytically active metal sites to isolation and stabilisation of biomolecules. The highlight of this year, however, will undoubtedly be the graduation of my first PhD student, Lauren, who is also the first author on this paper!

Describe your journey to becoming an independent researcher.
Following an undergraduate degree at the University of Strathclyde, I was thrilled to accept a PhD position at Cambridge University, but I had no idea of what academia entailed, and certainly no concept that I would ultimately accept a job within the system.

The first year of my PhD was tough, very little worked, but with the publication of my first paper and a change of topic everything changed. Ultimately, I loved the chemistry I worked on in my PhD and assigning complex NMR spectra and problem solving mass spectral fragments became a fun hobby, and one I was paid to do! As my PhD came towards its end I rather boldly decided to move countries and research topics, a decision which has ultimately benefited me but was challenging in the short term.

My postdoc at MIT, was a very different experience from my PhD research. Rather than unraveling supramolecular mysteries we were attempting to develop better anticancer agents. The objective here was clear, but the magnitude of the problem you were attempting to address was very apparent. The postdoc did however provide extensive opportunities to diversify my background and acquire new skills.

When I was ultimately offered an independent fellowship at the University of Manchester I was able to use the skills I learned in these different settings to navigate the turmoil of moving once again to a new institution and learning new processes. Now I have a research group consisting of four students and a postdoc, and sitting on the other side of the fence I occasionally recognise I may have given my previous supervisors a bit of hard time!

What is the best piece of advice you have ever been given?
The piece of advice I reflect most often on is ‘consider your audience’. In essence who will read your text or watch your presentation, and what do they want to take from it. As scientists we become experts in particularly narrow subjects and can fixate on minor nuances which don’t impact the bigger picture. Understanding how much of the detail is of interest to your audience is a skill which, when mastered, allows the general public, our friends, family and fellow scientists to better appreciate the work we do.

Why did you choose to publish in ChemComm?
ChemComm is a very readable journal, the communication format and the broad readership made it well suited to this work which contains aspects of both supramolecular chemistry and magnetism. Additionally, as ChemComm published my very first research paper I am particularly fond of the journal and over the past decade have been able to see how well cited ChemComms can be!

Imogen completed her PhD at the University of Cambridge working for Prof Jonathan Nitschke where she explored new strategies for self-assembly of metal-organic container molecules. She then undertook her postdoctoral training with Prof Steve Lippard at MIT where her research was directed at understanding the mechanisms of non-classical inorganic anticancer complexes. In 2017 she was awarded a University of Manchester Dame Kathleen Ollerenshaw Research Fellowship, followed by a Royal Society URF in 2018 which enabled her to start her own research program looking at the design and discovery of metal-organic materials for novel applications.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Community – Nitin Patil

ChemComm would like to celebrate the dedicated authors who have continually published their outstanding research in our journal. In this new and ongoing feature, you can learn more about the ChemComm community and the authors who have chosen our journal for the home of their urgent Communications.

In the interview below, find out about our dedicated author, Nitin T. Patil (IISER, Bhopal) and his latest Feature Article ‘Gold and hypervalent iodine(iii): liaisons over a decade for electrophilic functional group transfer reactions‘. Read Nitin’s impactful review in our new collection ChemComm Community – Dedicated Authors.

Our interview with Nitin

What was the motivation for carrying out this work?
It all started when my former student Dr. Banerjee was writing the introduction for his doctoral thesis, which describes alkynylative cross-coupling reactions merging hypervalent iodine(III) chemistry and Au(I)/Au(III) catalysis. While trying to do that, we realized there existed not even a single article capturing the evolution of the decade-long association between Au-catalysis and hypervalent iodine(III) chemistry. Since our lab has contributed to this field with six reports over the years, we felt a keen interest to write an article that would not only conceptually consolidate all the literature available, but would also highlight the close association of the development of Au-catalysis with that of functional group transfer reactions employing hypervalent iodine(III) reagents.

What are the main areas of research in your laboratory?
Our lab has mainly been dedicated to the development of novel chemical transformations utilising two important modes of reactivities in gold catalysis, namely carbophilic activation and Au(I)/Au(III) catalysis. Lately, we have focused our attention on the development of novel difunctionalization reactions of C-C multiple bonds by using the interplay of these two distinct modes of reactivities. We are also developing new, efficient and sustainable ways to achieve the arduous Au(I)/Au(III) catalytic cycle to facilitate novel cross-coupling reactions.

How is gold catalysis helping chemists tackle the long-lasting challenges in the field of organic synthesis?
I believe just like every element in the periodic table, gold is unique in its own way. It brings with itself a unique set of properties that provides access to unparalleled reactivities and selectivities. Indeed, owing to the dedicated efforts of many esteemed groups working in this field, it is now quite clear that the gold catalysts exhibit excellent chemo- and regioselectivity. This has indeed provided access to a broad spectrum of chemical space that is previously unattainable.

What aspect of your research are you most excited about at the moment?
We are currently focused on the development of novel transformations using ligand-enabled Au(I)/Au(III) catalysis. I find this particular area of gold catalysis intriguing as it offers a complementary reactivity/selectivity to that obtained by other transition metal catalysis which involves classical oxidative addition/migratory insertion pathways. Though there exist some examples which clearly reflect the complementarity in reactivity/selectivity, we are excited to see if we can develop more such reactions thereby increasing the portfolio of the field.

Why did you decide to publish this work in ChemComm?
The journal covers a diverse field of chemical research and therefore I expect maximum readability of the published work. Moreover, a quick reviewing process and short processing time before publication are equally important factors. Additionally, the reviewer’s comments and editor’s decision are fair; and most importantly, authors’ appeal/rebuttals are seriously considered by the editors. It is for these reasons that during my independent research career, I have published 18 articles in this journal.

We would like to extend our thanks to Nitin for his continual support of ChemComm. Don’t miss his Feature Article in our ChemComm Community – Dedicated Authors collection.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm HOT articles – Videos

In this post you can find out more about the latest HOT research published in ChemComm. All of the articles in our HOT collection have been carefully selected by our Editors for their significance, impact and quality.

Watch the following videos to learn more from the authors publishing this urgent research.

Distinct impact of glycation towards the aggregation and toxicity of murine and human amyloid-β
Eunju Nam, Jiyeon Han, Sunhee Choib and Mi Hee Lim
ChemCommun.
, 2021, 57, 7637-7640

 

Enhanced polysaccharide nanofibers via oxidation over SiliaCat TEMPO
Rosaria Ciriminna, Antonino Scurria and Mario Pagliaro
Chem. Commun., 2021, 57, 7863-7868

 

A novel 18F-labeled clickable substrate for targeted imaging of SNAP-tag expressing cells by PET in vivo
Dominic Alexej Depke, Christian Paul Konken, Lukas Rösner, Sven Hermann, Michael Schäfers and Andrea Rentmeister
Chem. Commun., 2021, 57, 9850-9853

Find out more here: https://www.uni-muenster.de/Cells-in-Motion/newsviews/2021/09-30.html (link active from 30 Sep 2021)

 

 

 

 

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Strategies for improved fabrication of polysaccharide nanofibers

Cellulose nanofibers (CNFs) are used in large amounts in the paper and biomedical industry. The synthesis process, the nature of the catalyst used, and the recyclability of the catalyst has a direct impact on the cost effectiveness of industrial grade CNFs. CNF production follows carboxylation of the primary alcohol groups at the surface of the cellulose fibres mediated by catalyst 2,2,6,6-tetramethyl-1-piperidine-N-oxy radicals (TEMPO). The genotoxic nature of TEMPO suggests the requirement of a lower concentration of the catalyst used during the reaction.

Scheme for different synthesis strategies and characterization of TEMPO mediated CNFs.

Researchers across the world tried a green synthetic approach for CNFs preparation. This also includes successful removal of the catalyst from the product after completion of the reaction. One of the processes employs oxidation of wood pulp fibres using the magnetically recoverable Karimi’s catalyst (TEMPO@SiO2@Fe3O4). The products obtained using the modified catalyst is 5 nm thick cellulose nanofibrils like those obtained in the oxidation mediated by TEMPO in solution. Whereas, the catalyst was easily recovered with a magnet and successfully reused in 4 successive reaction cycles.

Differently modulated TEMPO like SiliaCat TEMPO (a commercial immobilized TEMPO catalyst) and others, show that hybrid sol–gel catalyst allows the synthesis of insoluble polysaccharide nanofibers of superior quality, eliminating waste.

New production strategies involve TEMPO-mediated oxidation followed by homogenisation. The residual hypochlorite can be quenched with 0.3% ascorbic acid to produce chloride and subsequently CNF is separated from the solid catalyst via simple filtration. This dramatically reduced the polysaccharide nanofiber production costs opening the route to large-scale production of functional products where their use has been limited by high cost.

For details: please visit https://pubs.rsc.org/en/content/articlelanding/2021/sc/d1sc03114g

 

About the blogger:

Dr. Damayanti Bagchi is a postdoctoral researcher in Irene Chen’s lab at University of California, Los Angeles, United States. She has obtained her PhD in Physical Chemistry from Satyendra Nath Bose National Centre for Basic Sciences, India. Her research is focused on spectroscopic studies of nano-biomaterials. She is interested in exploring light enabled therapeutics. She enjoys travelling and experimenting with various cuisines.

You can find her on Twitter at @DamayantiBagchi.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Amit Kumar

Amit Kumar joins our growing community of authors who have chosen to publish their first-time independent research article in ChemComm. Read Amit’s ChemComm1st article ‘Direct synthesis of polyureas from the dehydrogenative coupling of diamines and methanol‘ in the full milestones collection.  In this post, you can find out more about Amit and his exciting research.https://pubs.rsc.org/en/content/articlelanding/2021/cc/d1cc01121

Our interview with Amit

What are the main areas of research in your lab and what motivated you to take this direction?
The discovery of new organometallic catalysts to enable a circular economy is the main theme of research in my lab. Starting my independent academic career with the COVID pandemic has made me realize the onus on scientists and academics to prepare our planet to prevent any future catastrophes. The adverse effects of climate change on the environment have become visible in many forms and is a serious cause of concern in current times. These events have motivated me to utilize my expertise to contribute to mitigating the rising threat of climate change. I have therefore decided to dedicate my academic career in pursuit of sustainable technologies to enable circular economy (that advocates for using waste as a resource) e.g. CO2 capture, and utilization, and production of renewable, biodegradable, and recyclable plastics.

Can you set this article in a wider context?
The article reveals a new proof of concept method for the synthesis of polyureas using the approach of catalytic dehydrogenative coupling of diamines and methanol. Polyureas are commonly used plastics (used for coatings, and adhesives in construction industries) with an annual global market of 885 USD. Polyureas are industrially produced from the reaction of diamines, and diisocyanates. However, diisocyanates and their precursor – phosgene gas are highly toxic. The method disclosed in this article circumvents the use of toxic diisocyanates with methanol, which is not only less toxic and cheaper, but also renewable and can be made from the hydrogenation of CO2. Thus, the developed method is safer than the current state-of-the-art technology and allows the production of renewable polyureas. Moreover, the use of 13C-labelled methanol also allows the cost-effective production of 13C-labelled polyureas that could find applications in medical technologies such as drug delivery, and tissue engineering when coupled with 13C-MRI.

What do you hope your lab can achieve in the coming year?
In the coming year(s), we hope to develop more efficient (cheaper, higher TON, and reusable) catalysts of earth-abundant metals for the production and degradation of polyureas to demonstrate its closed-loop production cycle. Moreover, we also aim to expand this concept to demonstrate new closed-loop production pathways for polycarbonates, and polyurethanes using the approach of catalytic (de)hydrogenation.

Describe your journey to becoming an independent researcher.
October 4th, 2010. Sitting on the first bench of my undergraduate lecture course (taught by Prof. K. R. Justin Thomas, Indian Institute of Technology Roorkee), I studied the fascinating mechanisms of palladium-catalysed cross-coupling reactions. Oct 6th, 2010; Nobel Prize in chemistry was awarded to Heck, Negishi, and Suzuki for the development of palladium-catalysed cross-couplings in organic synthesis. I was thrilled with the news! Partly, because this was the first time, I already knew about the topic that won the Nobel Prize. My interest to delve deeper into this area made me write a review article on this topic in the final year of my undergraduate studies and led me to pursue this area for future research expeditions. I carried my DPhil research with Prof. Andrew Weller at the University of Oxford in the area of organometallic chemistry and then moved to the Weizmann Institute of Science, Israel to work with Prof. David Milstein on topics of green homogeneous catalysis. The work culture of the Milstein lab allowed me to pursue my independent ideas, lead the required collaborations, and work independently on various aspects of publications. These experiences made me confident to lead a research group in academia.

What is the best piece of advice you have ever been given?
I was once told about the 3Ds of leadership/management that I have found very helpful in my career.
Delegate: You cannot do everything by yourself. Effective delegation and collaboration can mean accomplishing the project goal in a limited timeframe and maximizing the utilization of individual team member’s strength.
Defer: Prioritise and defer tasks that can wait.
Delete: Time is precious. It is important to say No to certain tasks that don’t fit with your goals and vision.

Why did you choose to publish in ChemComm?
ChemComm is a highly prestigious journal and has a large readership from several fields of chemistry. Several breakthroughs (including synthesis of fullerenes, and rules for ring closures) have been published in this journal in the past. All of these factors in addition to the rapid peer-review process made me choose to publish in ChemComm.

Amit Kumar completed his Integrated M.Sc. Chemistry degree (2007-2012) at the Indian Institute of Technology (IIT), Roorkee where he received several research fellowships and awards (Indian Academy of Science, DAAD -Germany, IIT-ParisTech, KVPY & INSPIRE from the Govt of India) along with the Institute Silver Medal. He then won the Rhodes Scholarship and pursued his DPhil (2012-2016) under the supervision of Prof. Andrew Weller at the University of Oxford, UK. Upon completion of his DPhil, Amit received the PBC fellowship (Planning & Budgeting Committee, Israel) to carry his postdoctoral research with Prof. David Milstein at the Weizmann Institute of Science, Israel where he was promoted to be a Senior Postdoctoral Fellow in 2019. Amit was awarded the FGS (Feinberg Graduate School) Prize for the outstanding achievements in postdoctoral research 2018 by the Weizmann Institute of Science, Israel. In Jan 2020, Amit started his independent academic career as a Leverhulme Trust Early Career Researcher at the School of Chemistry, University of St. Andrews. His research interests are organometallic catalysis, energy storage, and circular chemistry.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm 2021 Emerging Investigators collection – videos

In this post you can find out even more about our 2021 Emerging Investigators and their research. Explore the growing collection and head over to our Twitter for the latest updates.

2021 Emerging Investigators – videos

Size-selective synthesis of platinum nanoparticles on transition-metal dichalcogenides for the hydrogen evolution reaction‘ by

 

A mechanism for ageing in a deeply supercooled molecular glass‘ by Andrew Cassidy et al.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Stefano Cinti

A warm congratulations to Stefano Cinti for publishing his first independent research article in ChemComm. Be sure to read Stefano’s #ChemComm1st article ‘Merging office/filter paper-based tools for pre-concentring and detecting heavy metals in drinking water‘ in our collection, ChemComm Milestones – First Independent Articles.

We recently caught up with Stefano to find out about his experience as a first-time author. Read about it in our interview below. 

What are the main areas of research in your lab and what motivated you to take this direction?
The main areas are biosensors, smart materials and sustainability. I think the combination of printing technologies and nanomaterials is capable of providing people with very useful analytical tools for improving life’s quality.

Can you set this article in a wider context?
This article represents a general and simple approach for improving decentralized analysis and to strengthen the concept of citizen science.

What do you hope your lab can achieve in the coming year?
I hope my lab, the uninanobiosensors lab, would be able to generate smart solutions for everyone needs monitoring something, in all contexts.

Describe your journey to becoming an independent researcher.
I was fortunate to work in the laboratory of Prof. Palleschi and Prof. Moscone at University of Rome “Tor Vergata”. They gave me all the fundamentals on biosensors and analytical chemistry, always supported me and allowed to spend time abroad. This gave me a wider, international perspective.

What is the best piece of advice you have ever been given?
I think the best advice has been given by observing my labmates at UCSD in the group of Joe Wang. I was a visiting PhD student, and it was clear that to make excellent research you just need your creativity and to work hard.

Why did you choose to publish in ChemComm?
It is a high-quality platform to highlight my research, and also I like the style of the journal.

Stefano Cinti is Assistant Professor at the Department of Pharmacy, University of Naples “Federico II”. He obtained a PhD in Chemical Sciences in the group headed by Prof. Giuseppe Palleschi at University of “Tor Vergata”. He leads the uninanobiosensors Lab (uninanobiosensors.com) and his research includes the development of Electrochemical (bio)sensors, Paper-Based devices, Nanomotors and Nanomaterials. He spent periods abroad in Finland, UK, USA, Germany and Spain. He published more than 45 papers on peer-reviewed journals, with H-index of 27, >2000 citations. In 2018 and 2019 he has been named Best Young Researcher in Bio-Analytical Chemistry and Analytical Chemistry, respectively (by Italian Chemical Society), and in 2020 he has been inserted in World’s Top 2% Scientists. He is in the board of the Chemical Cultural Diffusion group and of the Young Group of Italian Chemical Society. He is the Chair of AMYC-BIOMED, a multi-disciplinary conference for young chemists in the biomedical sciences. He is active in communicating science to non-specialized audience through TV shows, radio and magazine. Find Stefano on Twitter: @S_Cinti87

Find more ChemComm Milestones news on our Twitter: @ChemCommun

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Ashlee Howarth

We are delighted to introduce Ashlee Howarth, our latest #ChemComm1st author. Ashlee’s first independent research article was published in ChemComm in May. Her Communication ‘Synthetic approaches for accessing rare-earth analogues of UiO-66‘ has now been added to our growing collection, ChemComm Milestones – First Independent Articles. Find out more about Ashlee in our interview with her below.

Our ChemComm Milestones interview with Ashlee Howarth

What are the main areas of research in your lab and what motivated you to take this direction?
In my research lab at Concordia, we are interested in the design and synthesis of new rare-earth metal–organic frameworks comprised of multinuclear cluster nodes. We take inspiration from the field of zirconium-based MOFs – materials that I worked with extensively during my postdoctoral studies – where the vast majority of Zr-MOFs contain hexanuclear cluster nodes as building blocks. We are interested in using rare-earth metals to construct MOFs because of the possibility to generate several multinuclear rare-earth clusters (e.g., tetranuclear, hexanuclear, nonanuclear, etc) with varying geometry and connectivity. The diversity of cluster building blocks that are accessible, allows us to synthesize structures that are not as easily attainable (or not attainable at all) using other metals. We are still in the early stages of this research, but our long-term goals are to study these materials for the adsorption, catalytic breakdown, and chemical sensing of hazardous analytes.

Can you set this article in a wider context?
UiO-66 is a zirconium-based MOF that was first reported by researchers from the University of Oslo in 2008 (https://doi.org/10.1021/ja8057953). Since this initial report, there have been over 4,000 publications on the topic of UiO-66. This is because it is a highly robust MOF, built from hexanuclear zirconium clusters bridged by simple terephthalic acid linkers, and has been shown to be potentially useful for applications ranging from gas capture to catalysis to drug delivery. In this article, we report on the synthesis and characterization of eight rare-earth analogues of UiO-66, specifically the Y(III), Eu(III), Gd(III), Tb(III), Ho(III), Er(III), Tm(III), and Yb(III) analogue. We hope to see these rare-earth analogues of UiO-66 become extensively studied over the next decade, just like the Zr-based prototype.

What do you hope your lab can achieve in the coming year?
In the upcoming year, I hope that we can continue to build foundational knowledge with regards to the tips and tricks for synthesizing rare-earth cluster-based MOFs. This includes expanding on knowledge of de novo as well as post-synthetic modification techniques, purification and activation strategies, and methods for characterizing the chemical and physical properties of these new materials.

Describe your journey to becoming an independent researcher.
My journey to becoming an independent researcher began when I completed an Honours specialization project as an undergraduate student in the Corrigan lab at the University of Western Ontario. This was when I first learned about research, the possibility of graduate school, and the steps required to become an independent researcher in academia. From there my love for research, and specifically inorganic materials chemistry, continued to grow as a PhD student in the Wolf lab at the University of British Columbia. I was first introduced to MOFs during my postdoctoral studies in the Farha and Hupp groups at Northwestern University, and it was during my 3 years as a postdoc that I grew to love these materials. I was (and continue to be) fascinated by the fundamental aspects of MOF chemistry, discovering new building blocks, making new network structures, and growing crystals. I also love that MOFs have many potential practical applications due to their high porosities, surface areas, and tunable properties. As such, when finishing my postdoctoral studies I knew I wanted to continue working with MOFs – but I wanted to branch out from working with Zr-MOFs and start exploring the use of rare-earth elements. It’s been quite challenging working on a subclass of MOFs that are entirely new to me, but it’s also been very rewarding, and my students and I learn something new every day.

What is the best piece of advice you have ever been given?
It’s quite hard to choose just one piece of advice, since I have been given lots of great advice from my mentors over the years. One piece of advice that has always stuck with me, which came from my undergraduate supervisor John F. Corrigan, is to always be yourself. It sounds simple enough, but I was giving a practice presentation for my honours thesis defense and I had made pink PowerPoint slides. One of the other students in the group suggested I change the colour since pink might not be the most obvious choice for a professional scientific presentation. John told me to leave the colour if I liked it, and to always be myself. I’ve carried that advice with me throughout my scientific career and it has helped to give me confidence in myself as a scientist – even at times when I don’t always feel like I belong.

Why did you choose to publish in ChemComm?
ChemComm is a great journal with an excellent reputation in chemistry. I always wanted to publish in ChemComm when I was a graduate student but never had the opportunity. When my student, Pedro Donnarumma, was able to find the synthetic conditions necessary to make the first ever rare-earth analogues of UiO-66, I thought that ChemComm would be the perfect venue to disseminate the results quickly and have high visibility within the MOF and materials chemistry communities. I’m very proud to say that my first publication as an independent researcher is in ChemComm and I’m especially proud of the students Pedro Donnarumma (lead author, MSc graduate), Sahara Frojmovic (undergraduate Honours student), Paola Marino (MSc Student), and Hudson Bicalho (PhD candidate) who worked so hard to make it possible! The work also wouldn’t be possible without our awesome collaborator and expert crystallographer Dr. Hatem Titi.

Ashlee J. Howarth was born and raised in London, Ontario. She obtained her undergraduate degree from the University of Western Ontario in 2009, and then went on to do her PhD in inorganic materials chemistry at the University of British Columbia under the supervision of Michael O. Wolf. Before joining the faculty at Concordia, she completed an NSERC Postdoctoral Fellowship at Northwestern University with Joseph T. Hupp and Omar K. Farha. In 2018, Ashlee was recognized by Forbes Magazine as a “30 under 30” in Science for her contributions to research in the field of wastewater treatment, and the detoxification of chemical warfare agents. In 2019, she won the UBC Chemistry Young Alumnus Award, which recognizes a young alumnus whose accomplishments are of such excellence that they provide inspiration and leadership to students and other young alumni. At Concordia, Ashlee is the Concordia University Research Chair in Metal–Organic Frameworks, and the Howarth group is focused on the design and synthesis of rare-earth metal–organic frameworks targeting applications in wastewater remediation, catalysis, and chemical sensing.

 

Explore more ChemComm Milestones news and updates on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Robert Godin

ChemComm Milestones – Robert Godin

Robert Godin reached an exciting milestone this year when he chose to publish his first independent article in ChemComm. You can read Robert’s #ChemComm1st article ‘Experimental determination of charge carrier dynamics in carbon nitride heterojunctions‘ in our growing collection, ChemComm Milestones – First Independent Authors. We are also pleased to confirm that Robert’s significant research now features in our 2021 Emerging Investigators collection too.

To find out more about Robert’s experiences as a first-time author, watch the video interview below.

ChemComm Milestones interview with Robert Godin:

Explore more #ChemComm1st content on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)