Archive for the ‘News’ Category

Two for one – cleaning water and generating energy

nanotube arrayA fuel cell system that can generate electricity from organic compounds and clean up wastewater at the same time has been developed by scientists in China.

Yanbiao Liu from Shanghai Jiao Tong University and colleagues made a photocatalytic fuel cell comprising a TiO2-nanotube-array (TNA) anode and a platinum-based cathode. The cell uses light energy to degrade organic compounds in wastewater, generating electrons that pass through to the cathode, which converts the chemical energy into electrical energy.

Interested in learning more? Read the full news story in Chemistry World and download the team’s ChemComm communication.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Sugar injection to beat hospital infection

BacteriaA carbohydrate from the surface of the most virulent strain of the bacterium Clostridium difficile has been synthesised by chemists in Germany. The molecule could be used to develop a vaccine against the infection.

C. difficile infections are the most common cause of hospital acquired diarrhoea and can lead to the death of elderly patients and those with weakened immune systems.’C. difficile is on the rise in industrialised countries,’ says Peter Seeberger, who led the team that carried out the research at the Max Planck Institute of Colloids and Interfaces, Potsdam. ‘There is a need for a vaccine but it’s a big challenge.’

Find out more about Seeberger’s progress towards developing a vaccine in the full Chemistry World news story and download his ChemComm communication, free for a limited period.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Artificial Photosynthesis – submission deadline extended

Due to popular demand, the submission deadline for ChemComm‘s Artificial Photosynthesis web theme has been extended until 30th September 2011.

Visit the original announcement for more details about the issue.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dopamine sensor works in water

A new tool for the selective detection of dopamine in water, with potential applications to urine and serum, has recently been developed by the Chinese research group led by Fang Zeng and Shuizhu Wu.

The new sensor, with a detection limit of 50 nM, is based on the fluorescence response obtained when dopamine reacts with a molecule containing an o-phtalic hemithioacetal (OPTA). The selectivity of the system over other amino acids and primary amines has been obtained by trapping the OPTA-bearing group within the pores of microporous silica particles and enhanced by anchoring a β-cyclodextrin (β-CD) layer on the surface of the particles. 

The β-CD, due to their ability of supporting both hydrogen-bond and hydrophobic interactions, serves as a barrier for most interfering molecules but allows dopamine to reach the pores. The authors believe that this derives from its limited capability of forming both hydrophobic and hydrogen-bonds.

   

 

Repeated tests proved that without the β-CD layer the selectivity is lost and that out of 24 potential interfering molecules, among which common amino acids, epinephrine and others, only two (histidine and norepinephrine) gave responses comparable to dopamine. While the results obtained for norepinephrine can be ascribed to the structural similarities to the target molecule, the reason behind the behaviour of the sensor towards histidine are currently unclear.

Dopamine is an important neurotransmitter involved in behavioural responses, sleep regulation, mood and learning processes among others. A malfunction in the dopamine regulating processes and related disruptions are implicated in the attention deficit disorder, Alzheimer`s disease, schizophrenia and psychosis. 

If you would like to read more, then download the following ChemComm communication:- 
 
Mesoporous silica particles for selective detection of dopamine with β-cyclodextrin as the selective barricade
Changmin Yu, Ming Luo, Fang Zeng, Fangyuan Zheng and Shuizhu Wu
Chem. Commun., 2011, Advance Article 
 
Posted on behalf of Dr. Giorgio De Faveri, Web Writer for Catalysis Science & Technology. 
 
 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ISMSC: Cram Lehn Pedersen Prize awarded

Professor Amar Flood delivered the inaugural Cram Lehn Pedersen Prize lecture at at the 6th International Symposium on Macrocyclic and Supramolecular Chemistry (6-ISMSC) in Brighton last week. The lecture, entitled ‘Binding and releasing anions with CH hydrogen-bonded receptors’, discussed his group’s efforts to regulate chloride concentrations in solution using aryl-triazole foldamers bearing azobenzene units. The foldamers can reversibly bind and liberate chloride depending on the wavelength of light shone on them.
The prize was sponsored by ChemComm and Dr Robert Eagling, ChemComm Editor, presented the certificate to Professor Flood. 
Professor Amar Flood (right) receives his award certificate from ChemComm Editor Dr Robert Eagling

You can read some of Professor Flood’s recent research in the recent supramolecular chemistry web theme issue:
Two levels of conformational pre-organization consolidate strong CH hydrogen bonds in chloride–triazolophane complexes
Yuran Hua, Raghunath O. Ramabhadran, Jonathan A. Karty, Krishnan Raghavachari and Amar H. Flood, Chem. Commun., 2011, 47, 5979-5981

Find out more about ISMSC in my conference blog.

And don’t forget – there is still time to submit your nomination for the 2012 Cram Lehn Pedersen prize. Deadline 31st July 2011. See the call for nominations for more details.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Loudspeakers in your window

Korean scientists have used graphene sheets to make a transparent and lightweight loudspeaker which, they say, can be attached to windows and computer screens.

Graphene, whose isolation led to the Nobel prize in physics for Andre Geim and Konstantin Novoselov, is a single layer of graphite. Owing to its remarkable mechanical and electronic properties, it is set to revolutionise modern technology and new uses for it are continuously being discovered. However, one of the big challenges is to fabricate large area films of graphene.

Now, Jyongsik Jang and coworkers from Seoul National University have used inkjet printing and vapour deposition to deposit graphene oxide onto poly(vinylidene fluoride) (PVDF), which is then reduced to create a graphene film. This demonstrates not only a new method for making controlled graphene films, but also a new use for the material: for making a thin transparent loudspeaker.

The acoustic actuator consists of a graphene-based transducer connected to the sound source and amplifier

The speaker system consists of a PVDF thin film sandwiched between two graphene electrodes. The speaker works because when an electrical current from the sound source is applied, the converse piezoelectric effect causes the PDVF film to distort, creating sound waves.

Such a system would be easy to install and usable anywhere where sound is needed, Jang explains. They could even eventually be used as noise cancelling devices by creating anti-noise waves (same amplitude but with inverted phase to the original sound).

To read more please visit the Chemistry World website, or download the original ChemComm communication.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Recognition of T-containing DNA bulges with Macrocyclic Zinc complexes

DNA bulges occur when one or more extra bases are added on one side of the DNA strain during the transcription process. These bases generally face either inwards or outwards with respect to the main helix. If we imagine DNA as a straight ladder, a bulge would be a half step that fails to reach the other side. DNA bulges, if not corrected after the transcription process, can often lead to mutations and to the rise of diseases and life threatening conditions. Particular DNA bulges are also relevant in the replication of HIV.

Due to the importance and biological significance of these structures, many studies have been conducted towards the development of molecules that specifically target and recognise these modifications. Molecules have been developed to selectively bind to bulges containing Guanine(G), Adenine(A) and aggregates of Cytosine/Thymine(C/T), but very few show high selectivity for T alone.

The group led by Janet R. Morrow, of the University of Buffalo focused on thymine, and developed a Zn(II) based macrocyclic complex that exhibits a higher than 100-fold specificity for T bulges. The complex is based on a modified cyclen backbone with a quinoline-containing pendant arm, which proved essential for the enhanced selectivity and binding abilities.

Another interesting feature emerging from the study is that when tested on oligonucleotides containing single-base bulges in the stem of a hairpin or a duplex structure, binding occurred without damage to the structure of the stem and only when T was in the bulge. Several other oligonucleotides with different bases in the bulge and with thymine in the hairpin stem (no bulge) were tested to further assess the selectivity of the complex, resulting in only one example of reduced binding when the T bulge has a cytosine on both sides.

 NMR titrations were used to follow the binding process thanks to a clear change in the chemical shift of methylenic protons on the base after coordination.

To read the original ChemComm communication, please take a look at:-

Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex
Imee Marie A. del Mundo, Matthew A. Fountain and Janet R. Morrow
Chem. Commun., 2011, Advance Article

Posted on behalf of Dr. Giorgio De Faveri, Web Writer for Catalysis Science & Technology.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Another successful year for the general chemistry journals

          Another year, another impact factor and the RSC general chemistry journals, Chem Soc Rev and Chem Comm, are still going strong.     The 2010 impact factors were announced by ISI (Thomson Reuters) this week, which showed Chem Soc Rev increase by a whopping 32% to 26.583, and ChemComm continuing to do well at 5.787.

The Cambridge Editorial Office would like to thank everyone involved for their hard work and dedication to both journals over the years. In particular, we would like to thank all of our Associate Editors, Editorial and Advisory Board members, authors and referees, without whom none of this would have been possible.

With another successful year in the bag, I’m already looking forward to what the future brings…

If you are interested in how the RSC performed overall then please visit the RSC publishing blog post for the full round up.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tetrafluorocyclohexane: a novel polar motif

The cyclohexane motif is among the most common in organic chemistry but selectively fluorinated versions are rare. The high polarity of C–F bonds can influence the conformation and reactivity of molecules, making fluorinated molecules high on the target list of many chemists, including David O’Hagan at the University of St Andrews, UK.

His team have managed to make 1,2,3,4-tetrafluorocyclohexane, the first example of a cyclohexane with more than two vicinal fluorine atoms. The all syn stereochemistry forces two of the C–F bonds into 1,3-diaxial orientations. This diaxial interaction makes the molecule polar, which O’Hagan suggests could make it a novel polar structural motif for organic materials.

Graphical abstract: Synthesis and structure of all-syn-1,2,3,4-tetrafluorocyclohexane

Find out more: download O’Hagan’s ChemComm communication for free until 28th July.

Also of interest: Fluorine chemistry web theme

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Quantum dots selectively label endoplasmic reticulum

Graphical abstract: Selective labeling of the endoplasmic reticulum in live cells with silicon quantum dotsScientists are a step closer to understanding how an important cell organelle works, which could lead to new insight into disease such as diabetes and Alzheimer’s disease.

The endoplasmic reticulum (ER) plays a critical role in protein synthesis and transport. Its malfunction can lead to serious diseases so it is important to be able to observe how it works. 

Yukio Yamaguchi and colleagues at the University of Tokyo, Japan, have managed to selectively label the ER in live cells using quantum dots (QDs). Although organic dyes have previously been used for this purpose, Yamaguchi’s QDs are less toxic and more photostable. 

The QDs’ photoluminescence enabled the team to view the ER using a confocal microscope, making them a powerful tool for long-term real-time observation of the ER, Yamaguchi says.

Find out more by downloading the communication.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)