Archive for the ‘First Independent Author’ Category

ChemComm Milestones – Weijin Li

We are excited to share the success of Weijin Li’s first-time independent article in ChemComm; “Bionic electroluminescent perovskite light-emitting device” included in the full milestones collection. 

Read our interview with Weijin below.

What are the main areas of research in your lab and what motivated you to take this direction?

My lab’s research areas include open framework materials (e.g. metal-organic frameworks, hydrogen organic frameworks), thin films and their electrical (e.g. dielectric)/ luminescent/sensing properties. Focus on the scientific questions inside the energy conversion, I am motivated to take the direction of dielectric control of open framework materials and film assembly. By controlling the dielectric constant and consumption, we aim to design either high-dielectric materials for energy storage or dielectric materials for electromagnetic radiation shielding. Besides, human health will face a great threat if one contacts polluted gas, water and some other agents. Inspired by the sensing mechanism of open framework materials based on a dielectric or luminescent behaviour change, we will also take the direction of dielectric and luminescent materials for sensing devices.

Can you set this article in a wider context?

The novelty of this work is in its configuration of fluorescent films. The ultrafast dynamic color change with ultra-high-definition flat panel display was realized in a simple and facile way based on perovskite light-emitting-diodes (PeLED). A PeLED displaying green color is combined with a brown fluorescent coating layer to form a hybrid FC-PeLED system. The FC-PeLED system can simulate the complete cycle of bionic plant colors from green to yellow through low energy (<0.6 mW) input. Thanks to the low-power-consumption/high-brightness of the PeLED and the color adjustability of the fluorescent layer, we built a new type of bionic electroluminescence system (FC-PeLED). The bionic process for the entirely natural process of ginkgo leaves realized by the obtained FC-PeLED will promote the future development of low-cost and low-power consumption bionic technology.

What do you hope your lab can achieve in the coming year?

In the coming year, we hope to develop crystalline coordination polymers with fast bionic color change at the stimulation of an electrical field and reveal the electrochromic mechanism. Focus on our research direction, both theoretical and experimental insights of dielectric materials based on conductive coordination polymers are going to be brought to light in the coming year.

Describe your journey to becoming an independent researcher.

I obtained my PhD degree under the supervision of Prof. Rong Cao (NSFC distinguished professor) at the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 2015, where my thesis was “Preparation and properties of carboxyl-based metal-organic frameworks film”. Since 2016, I join Prof. Cao’s lab in Xiamen University, with the close collaboration of Prof. Xinchen Wang at Fuzhou University and Prof. Lasheng Long and Prof. Jun Tao at Xiamen University, on the topic of dielectric properties of metal-organic framework thin film. After a one-year postdoctoral stay at Xiamen University, I joined Prof. Roland A. Fischer’s group at the Chair of Inorganic and Metal-organic Chemistry, Department of Chemistry, Technical University of Munich, Germany (2016-2021), under funding support from the Joint Chinese Scholarship Council-German Academic Exchange Service (CSC-DAAD), an Alexander von Humboldt fellowship and German Research Foundation (DFG), and worked on preparation and study of metal-organic framework thin film for electrocatalysis. I was awarded the Japan Society for the Promotion of Science Fellowship under the host of Prof. Takuzo Aida in Riken with the research on “mass transport in two-dimensional nanospace formed by polymeric nanosheets”. Unfortunately, due to the 2019-coro pandemic situation, I was unable to join Prof. Aida and just worked with Prof. Aida and colleagues online for some research exchanges and discussions. By chance, I was granted an Overseas High-level Recruitment of Talents-Youth Project in 2021. Then, I began my independent Professorship at the School of Materials Sciences and Engineering, Nanjing University of Science and Technology with an interest in open framework materials and their dielectric/luminescent/sensing properties.

What is the best piece of advice you have ever been give?

“Perseverance is helpful for researchers since it is common that researcher obtains more negative results than good results.”

Why did you choose to publish in ChemComm?

I published a work “patterned growth of luminescent metal-organic framework film: a versatile method for electrochemical-assisted microwave deposition” and also see recent publications in ChemComm related luminescent materials. Consideration of the novelty of my work, thus I decide to submit it to ChemComm.

Weijin Li received his Ph.D. at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 2015. During six years of postdoctoral experience across Xiamen University, China (2015-2016) and Technical University of Munich, Germany (2016-2021), Weijin received the research awards of an Alexander von Humboldt fellowship and Japan Society for the Promotion of Science. Granted Overseas High-level Recruitment of Talents-Youth Project, Weijin began his independent Professorship at the School of Materials Sciences and Engineering, Nanjing University of Science and Technology in 2021. His research interest focuses on inorganic and organic hybrid materials and their dielectric/luminescent/sensing properties.

Researchgate: https://www.researchgate.net/profile/Weijin-Li

Explore more ChemComm Milestones news and updates on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Zhen Jiang

We are excited to share the success of Zhen Jiang’s first-time independent article in ChemComm; “Designing strong, fast, high-performance hydrogel actuators” included in the full milestones collection. 

Read our interview with Zhen below.

What are the main areas of research in your lab and what motivated you to take this direction?

In my project, harnessing the power of organic/polymer chemistry, we are designing and synthesizing new polymeric materials that could shape the future of soft robotics. The created polymers can change their shape or size in response to stimuli like electricity, heat, light, chemical or pH. We are very passionate about this research because we believe that expansion of the capabilities of soft robotics requires new synthetic polymeric materials.

Can you set this article in a wider context?

A key component in soft robotic devices is soft actuators which can transduce energy into mechanical motions. Among all of the soft actuator materials, hydrogels absorbing large amounts of water are particularly promising to be integrated into soft robotics, due to their tissue-like softness, and ability to undergo large deformations. However, there are substantial shortcomings that limit their performance and real-world applications.

In this Highlight, we discuss the recent advances in material designs to address pre-existing limitations in hydrogel actuators such as poor mechanical properties, slow actuation speed and limited actuation performance. We also comment on the important role of synthetic chemistry in creating hydrogel actuators with improved material performance and exceptional functionalities. It is thus anticipated that our article can spark great interest among chemistry community in developing advanced materials for soft robots.

What do you hope your lab can achieve in the coming year?

In the next few years, using molecular design principles, we will focus on synthesizing advanced soft actuator materials exhibiting a unique combination of high-power actuation, excellent mechanical properties and good processability.

Describe your journey to becoming an independent researcher.

I did my Master in Material Science at Fudan University, China. I was trained with extensive organic chemistry skills to synthesize functional small molecules/polymers and learned how to design photodeformable polymers. Then I went to University of Queensland for my PhD study, working on a number of projects related to synthetic polymers while aiming for different applications including high-resolution lithography, functional nanopatterns and soft actuators. These research experience enable me to develop a high level of independence which lay foundation for my current project. In 2022, I was awarded an Australian Research Council Discovery Early Career Researcher Award (ARC DECRA) to broaden my network and mature as an independent researcher.

What is the best piece of advice you have ever been give?

The best advice I have received is probably from my Master supervisor Prof. Yanlei Yu at Fudan University “Opportunities are only for those who are prepared”. This advice helps me get through the tough time in my research career, and keeps me optimistic and have faith.

Why did you choose to publish in ChemComm?

As a polymer chemist, I am a regular reader of ChemComm which is one of the best journals in the field of chemical science. The reviewer’s comments are very helpful in improving the quality of submitted manuscripts. I am also especially impressed by its strong support to early career researchers.

Zhen Jiang is an early-career polymer chemist, specializing in designing and synthesizing stimuli-responsive soft materials for soft robotics and artificial muscles. He received his B.Eng. in Polymer Science and Engineering from Donghua University in 2011, his M.Eng. in Materialogy from Fudan University in 2014, and his Ph.D. in Polymer Science from The University of Queensland in 2018. In 2022, he received Discovery Early Career Researcher Award (DECRA) from Australian Research Council (ARC) to advance his research career. His research interests include soft actuators, liquid crystalline elastomers, hydrogels, and photo-responsive polymers.

Explore more ChemComm Milestones news and updates on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Dinesh Shetty

We are excited to share the success of Dinesh Shetty’s first-time independent article in ChemComm; “Salicylaldehydate coordinated two-dimensional-conjugated metal–organic frameworks” included in the full milestones collection. 

Read our interview with Dinesh below.

What are the main areas of research in your lab and what motivated you to take this direction?

We are working on designing tunable porous materials for energy and water purification applications. The major focus is to develop framework materials/membranes for emerging water pollutants removal and also for desalination via capacitive deionization. In parallel, we are working on both photocatalytic and electrocatalytic framework materials for CO2 and N2 conversion, battery, and supercapacitor. The motivation is stemming from the fact that both focused research areas are socially relevant and need of the time.

Can you set this article in a wider context?

The novelty of this work is in its simplicity. The building block that we utilized for the construction of conjugated MOFs can be synthesized economically and the method we followed is green (first time in c-MOFs synthesis). The advantage of these combinations helping us to scale up and utilize these interesting materials in many applications.

What do you hope your lab can achieve in the coming year?

We are in the direction of achieving an interesting efficient framework system (both covalent organic frameworks and conjugated metal organic frameworks) that can be useful in energy conversion and water purification. We are on the path to developing a scaleup fabrication setup for above mentioned materials, which will help us to achieve the path of real-life applications (in a way commercialization)

Describe your journey to becoming an independent researcher.

It was a rough one but I started to appreciate it more now. It took 8 years after my PhD to get an independent position, however, those years of experience in interdisciplinary fields and spending time with world-renowned scientists really helped me to shape my career. The journey also helped me to gain my trust in the relevance of perseverance and hard work to achieve your dreams. Another advantage of my journey is learning multicultural scientific environment (I spent time in India, USA, and South Korea before starting my independent career), which is greatly helping me to supervise a group of scientists and students coming from different parts of the world.

What is the best piece of advice you have ever been give?

It was from my parents: ‘Your knowledge should not be judged by your medals/laurels but should be judged by how it helps solve the social problems

Why did you choose to publish in ChemComm?

Firstly, it is one of the best short communications journals: readers friendly and has sharp scientific ideas and broad-readership. Secondly, it is close to my heart as I published a major part of my PhD work in this journal many years ago.

Dr. Dinesh Shetty is an Assistant Professor of Chemistry in the College of Arts and Science, Khalifa University since fall-2019. He holds Ph.D. in chemistry from Seoul National University (SNU), South Korea. From 2011 to 2013, he was a postdoctoral fellow at Winship Cancer Institute, Emory University, USA, and later moved back to South Korea in the year 2013 where he was a research fellow in the group of Professor Kimoon Kim at the Center for Self-assembly and Complexity, Institute for Basic Science, POSTECH. In 2016, he moved to New York University Abu Dhabi as a research scientist. He is a trained chemist with experience in multidisciplinary research areas including material science, porous materials, renewable energy, water purification, supramolecular chemistry, and biomedical science. He is the author of 53 peer-reviewed journal papers, >30 conference papers, 21 invited talks, and 6 patents with an h-index of 27.

He received Young Investigator Award from the Korean Society of Nuclear Medicine and the Best Researcher Award from the Korean Cancer Research Foundation. He is the recipient of the US National Academy of Science Arab-American Frontiers seed grant. His author profile was recently introduced by Angewandte Chemistry International Edition, a flagship chemistry journal. He delivered research talks in multiple countries and is currently an active member of the Royal Society of Chemistry under the Future Leaders in the Filed category. In his free time, he writes poems and newspaper column articles and also podcasts his thoughts. His research interest is focused on the development of multifunctional materials for various applications including energy, water purification, and biomedical applications.

A list of publications can be found at:

Google Scholar: https://scholar.google.com/citations?hl=en&user=QVgucAQAAAAJ&view_op=list_works&sortby=pubdate

Explore more ChemComm Milestones news and updates on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Shi-Qiang Wang

We are excited to share the success of Shi-Qiang Wang’s first-time independent article in ChemComm; “Adsorbate-dependent phase switching in the square lattice topology coordination network [Ni(4,4′-bipyridine)2(NCS)2]n” included in the full milestones collection. 

Read our interview with Shi-Qiang below.

What are the main areas of research in your lab and what motivated you to take this direction?

My research focuses on crystal engineering of metal-organic materials (PCPs/PCNs/MOFs) for gas storage, water sorption and hydrocarbon separations. In particular, the unusual “switching” behaviour of a series of square lattice coordination networks has fascinated me to work on this field.

Can you set this article in a wider context?

Gas storage is an important but energy-intensive process in industry. Although porous physisorbent materials hold significant promise in addressing this matter, they suffer from relatively low working capacity due to the Langmuir (type I) sorption isotherms. Flexible/switching coordination networks or MOFs featuring stepped sorption isotherms may provide higher working capacity and better thermal management than rigid sorbents with type I isotherms. However, their responsiveness to different adsorbates remains largely understudied.

In this work, we report the sorption properties of nine gases (N2, CH4, CO2, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) for a prototypal switching coordination network, [Ni(4,4’-bipyridine)2(NCS)2] (sql-1-Ni-NCS), which exhibits adsorbate-dependent switching pressures and sorption uptakes. The primary message from this study is that nonporous materials (as determined by their crystal structures and/or 77 K N2 sorption data) should not be discarded as candidates for sorption-based applications as they may exhibit exceptionally high gas sorption working capacity through a phase switching mechanism.

What do you hope your lab can achieve in the coming year?

In the coming year, I hope we can develop a simple and cheap, sustainable and environment-friendly method for manufacturing functional metal-organic materials in large scale that meet the needs of industry and society. We are also open for potential collaborations from different perspectives to make the world better together.

Describe your journey to becoming an independent researcher.

I started my “chem journey” since I was an undergraduate at Hebei University (2009-2013) where I learnt fundamental knowledge of different chemistry disciplines (e.g., Inorganic, Organic, Analytical, and Physical Chemistry). I then majored in Inorganic Chemistry for my Master’s degree (2013-2016) and conducted systematic research under the supervision of Prof. Xiang-Jian Kong and Prof. La-Sheng Long at Xiamen University. I worked on 3d-4f metal clusters and studied their magnetism and chirality.

Although I changed my research topics to higher dimensional (2 or 3D) metal-organic materials during my PhD study, the skills I have learnt previously helped me a lot. Under the guidance of Prof. Michael Zaworotko at the University of Limerick (2016-2022), I developed a family of 2D switching coordination networks that can be potentially used for gas storage and hydrocarbon separations. Afterwards, I was fortunate to have the opportunity to work with A/Prof. Dan Zhao as a Research Fellow at the National University of Singapore where I worked on advanced porous materials for air dehumidification.

Recently, I joined the Institute of Materials Research and Engineering (IMRE), which is a leading research institute of the Agency for Science, Technology and Research (A*STAR), Singapore. As a Scientist at IMRE, I will continue my research, which is already part of my life, and hope to discover more advanced materials for real-world applications.

What is the best piece of advice you have ever been give?

Negative results can be also informative and should not be just laid aside and neglected. Unfortunately, it is common that researchers are keen on publishing the best results and pursuing new records, while it is also meaningful and important to mention what they have tried or failed before reaching the targeted goals.

Why did you choose to publish in ChemComm?

My first first-author paper was published in ChemComm in 2018 (https://doi.org/10.1039/C8CC03838D), and I was impressed by its rapid publication, excellent reputation, and broad audience. It thus prompted me to submit my first independent research (https://doi.org/10.1039/D2CC06549E) to ChemComm as well.

 

Dr. Shi-Qiang Wang (MRSC) is currently a Scientist at the Institute of Materials Research and Engineering (IMRE) under the umbrella of the Agency for Science, Technology and Research (A*STAR), Singapore. Before moving to IMRE, he served as a Research Fellow (2022.03-2022.10) in the Advanced Porous Materials Group (PI: A/Prof. Dan Zhao) at the National University of Singapore (NUS). He completed his PhD (2016.09-2020.06) and continued as a Postdoctoral Researcher (2020.08-2022.03) in the Crystal Engineering Research Group (PI: Prof. Michael Zaworotko) at the University of Limerick (UL), Ireland. He won two “Young Scientist” conference Awards sponsored respectively by the European Crystallographic Association and the International Union of Crystallography in 2018/2019 and the 2020 Chinese Government Award for Outstanding Self-financed Students Abroad.

You can reach out to Shi-Qiang on Twitter: @ShiQiang_SQ, WeChat: sqwang0123, LinkedIn: https://www.linkedin.com/in/sqwangchem or his personal website: https://sqwangchem.com/

 

Explore more ChemComm Milestones news and updates on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Ricardo Peralta

We are excited to share the success of Ricardo Peralta’s first-time independent article in ChemComm; “Gas-phase organometallic catalysis in MFM-300(Sc) provided by switchable dynamic metal sites” included in the full milestones collection. 

Read our interview with Ricardo below.

What are the main areas of research in your lab and what motivated you to take this direction?

My research primarily aims to rationalize and develop applications for dynamic metal-ligand bonding phenomena in MOFs. I am motivated to explore these processes because I believe that to fully exploit the intrinsic characteristics of MOFs such as porosity, modular synthesis and crystallinity, the role of dynamic metal processes in fields such as catalysis must be elucidated. MOFs featuring dynamic metal-linker bonds are a promising route towards the synthesis of active and stable catalysts that do not require harsh activation conditions. The production of catalytically active MOFs often requires challenging synthesis and I believe that we have only touched the tip of the iceberg with the current research. The immense possibilities within MOF synthesis and it’s wider applications still fascinates and motivates me to pursue them.

Can you set this article in a wider context?

Using MOFs in heterogenous catalysis is advantageous due to the well-defined crystalline framework, which facilitates rapid diffusion of small molecules, high catalytic selectivity and can act as a matrix for the isolation of reactive complexes and intermediates.  Recyclability of heterogeneous catalysts provides a facile route to catalyst recovery.​ Due to high porosity and surface areas, gas phase catalysis is an area in which MOFs are particularly promising but which remains underexplored. Often MOFs featuring open metal sites are used for catalysis; however, such materials typically require harsh activation conditions and are not stable to some catalysis conditions.  The route towards gas phase catalysts proposed in this work relies on hemilability to generate temporary open metal sites in-situ without requiring harsh activation conditions.

What do you hope your lab can achieve in the coming year?

I hope that my lab can further establish the role of dynamic metal-ligand phenomena in MOFs and demonstrate the capacity of MOFs featuring hemilability in important applications.

Describe your journey to becoming an independent researcher.

My pathway to becoming an independent researcher has been challenging but entirely rewarding. Undertaking my PhD studies and postdoctoral work in Australia and Korea challenged me to develop my English communication skills and provided opportunities to learn about advanced characterization techniques in turn broadening my chemistry knowledge. I have been guided by mentors who are experts in the area and friends who have supported me through my journey. I feel incredibly lucky and proud to have an opportunity to pursue my dream as an independent researcher and continue my learning path.

What is the best piece of advice you have ever been give?

Perseverance is the key to great outcomes.

Why did you choose to publish in ChemComm?

Chemical Communications is a highly regarded journal in the chemical sciences and an excellent route to communicate new ideas and research. It has excellent readership which open up avenues to for exchange of new ideas. I have read multiple articles from journal throughout my career and it is an honor to have my first paper as an independent researcher published in ChemComm!

 

After completing my undergraduate studies, I worked in industry at DUPONT Mexico and Seguros Monterrey New York Life, which inspired me to pursue a career in research. Through my Masters program at the National University Autonomous of Mexico, I encountered Metal-organic Frameworks (MOFs) and developed a keen interest in the development and applications of crystalline materials. I moved to The University of Adelaide in Australia to conduct my PhD which focused on isolating reactive transition metal complexes in MOFs for catalytic reactions. Buoyed by my experience in MOF catalysis, I undertook a research fellowship (Brain pool program) at Daegu Gyeongbuk Institute of Science and Technology (DGIST) in South Korea, where I studied dynamic metal-ligand bonding within MOFs and its effect on catalysis. I continue to explore this fascinating phenomenon in my independent research and in my role as an Assistant Professor in Chemistry at the Metropolitan Autonomous University in Mexico.

 

Explore more ChemComm Milestones news and updates on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Samuel Jones

We are excited to share the success of Samuel Jones’s first-time independent research article in ChemComm;  Deoxyribonucleic acid polymer nanoparticle hydrogels – Chemical Communications (RSC Publishing)’ included in the full milestones collection. 

Read our interview with Samuel

What are the main areas of research in your lab and what motivated you to take this direction?

Research in my lab focuses on material/virus interactions with a specific focus on developing biocompatible virucidal materials and viral detection systems. I completed my undergraduate degree and PhD in Chemistry, so it is often a surprise to others that my research is now so closely linked to virology. However, the main focus of my PhD was the supramolecular assembly of nanoparticles and viruses are the ultimate self-assembled nanomaterial. Viruses can be thought of as non-living, making them merely an nanoscale assembly of genetic material, proteins and (in some cases) lipid envelopes. The self-assembly of these complex structures inside cells in fascinating but by treating virions as supramolecular assemblies it has been possible to design novel, destroy on contact, antivirals.

Can you set this article in a wider context?

Hydrogels are used in a wide array of research fields from contact lenses through to drug delivery systems. Physically cross-linked, and notably polymer-nanoparticle (PNP), hydrogels have been used for a wide range of application due to their dynamic nature and ease of manufacture. A gel like the one we published on here, made of abundant and cheap constituents that self heals, releases cargo and degrades upon addition of DNase has a broad scope of applications, including in drug delivery and tissue engineering.

What do you hope your lab can achieve in the coming year?

Current work in my lab is focussing on developing the next generation of broad-spectrum biocompatible virucides and showing that they have significant potential for the real-world treatment of viral infections. We are hoping to publish on this and the development of new viral detection and sensing systems within the next year. This year will also see the first PhD student graduate from my group, which will be a very exciting time.

Describe your journey to becoming an independent researcher.

As part of my undergraduate degree (MChem with professional Experience) at the University of Warwick, I spent 3 months in the research labs of Dr. Adrian Blackman at the University of Tasmania, Australia. It wasn’t until this period that I had even considered going into research, yet after my first real taste of scientific research, I loved it. I returned to Warwick to complete my degree, undertaking further research in the lab of Prof. Stefan Bon and my love of research grew. This was also where I saw first hand how to successfully run a research group.

From there, I joined the University of Cambridge in the group of Prof. Oren A. Scherman. The 4 years of my PhD were some of the best in my research career to date. I made life long friends, worked on interdisciplinary research with groups from across Europe and was fortunate to travel to many countries for research meetings and conferences. I was afforded a great deal of independence during this time and relished the opportunity to work collaboratively on new projects and ideas. I was also actively involved in the supervision of students from lab demonstrating in 1st year natural science labs through to supervision of masters students projects. I found that I really enjoyed the teaching and mentoring opportunities these roles afforded me.

Marrying the summer before my thesis submission and defending not long after returning from honeymoon, I was ready for my next research challenge. My new wife and I made the move across Europe to Switzerland. I joined the group of Prof. Francesco Stellacci to work on chemotactic nanomaterials, initially for a one year period. We both loved our time in Switzerland, and the Stellacci group, so much that we ended up staying for three years, had our first child and embraced the Swiss lifestyle as much as possible. During this time, my research focus shifted to the development and testing of virucidal materials, as I became fascinated with these non-living biological nanoparticles. I worked alongside some great scientists who were always open and willing to share knowledge and experience, ultimately allowing us to work together to produce novel antivirals.

When I was offered an independent fellowship at the University of Manchester, I was delighted and looked forward to bringing all my knowledge and experience together to produce my own independent research and train the next generation of scientists. Although the process of establishing an independent research group has its ups and downs, I would not change it. My research group currently consists of 8 PhD students and one PDRA and working with each of them to develop their own research is a joy.

What is the best piece of advice you have ever been give?

Maybe not direct advice but over the course of my research career, I’ve learned the importance of a healthy work-life balance. At times during my career, the balance was not always the healthiest and over longer time periods this can have a negative impact. Ensuring that I take time to see friends, be with family and exercise are just as important as any work I may have to do. This is something that I now promote with my own students and I hope they are better off for it.

Why did you choose to publish in ChemComm?

I have been a long time reader of ChemComm for the excellent and diverse range of manuscripts it publishes. My first ever research article was published in ChemComm, as part of an Emerging Investigator issue and we were fortunate to be able to provide the cover image there also, just like this paper. The broad-audience and communication format made it a good fit for this research and I hope to be able to publish with the journal again in the future.

Sam completed his PhD at the University of Cambridge working with Prof. Oren A. Scherman, where he explored the supramolecular assembly of nanomaterials using cucurbit[n]uril. He then moved to the EPFL, Switzerland to the group of Prof. Francesco Stellacci where his research focused on chemotactic nanomaterials and broad-spectrum virucidal materials. In 2017, he was awarded a Dame Kathleen Ollerenshaw Fellowship at the University of Manchester, which allowed him to establish his independent research programme. Now a lecturer in the Department of Materials at the University of Manchester, and resident member in the Henry Royce Institute, his research focuses on virus/material interactions with a specific interest in the development of novel virucidal materials and viral detection systems. Find Samuel on Twitter; @Scientist_Sam

Explore more ChemComm Milestones news and updates on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Stefano Cinti

A warm congratulations to Stefano Cinti for publishing his first independent research article in ChemComm. Be sure to read Stefano’s #ChemComm1st article ‘Merging office/filter paper-based tools for pre-concentring and detecting heavy metals in drinking water‘ in our collection, ChemComm Milestones – First Independent Articles.

We recently caught up with Stefano to find out about his experience as a first-time author. Read about it in our interview below. 

What are the main areas of research in your lab and what motivated you to take this direction?
The main areas are biosensors, smart materials and sustainability. I think the combination of printing technologies and nanomaterials is capable of providing people with very useful analytical tools for improving life’s quality.

Can you set this article in a wider context?
This article represents a general and simple approach for improving decentralized analysis and to strengthen the concept of citizen science.

What do you hope your lab can achieve in the coming year?
I hope my lab, the uninanobiosensors lab, would be able to generate smart solutions for everyone needs monitoring something, in all contexts.

Describe your journey to becoming an independent researcher.
I was fortunate to work in the laboratory of Prof. Palleschi and Prof. Moscone at University of Rome “Tor Vergata”. They gave me all the fundamentals on biosensors and analytical chemistry, always supported me and allowed to spend time abroad. This gave me a wider, international perspective.

What is the best piece of advice you have ever been given?
I think the best advice has been given by observing my labmates at UCSD in the group of Joe Wang. I was a visiting PhD student, and it was clear that to make excellent research you just need your creativity and to work hard.

Why did you choose to publish in ChemComm?
It is a high-quality platform to highlight my research, and also I like the style of the journal.

Stefano Cinti is Assistant Professor at the Department of Pharmacy, University of Naples “Federico II”. He obtained a PhD in Chemical Sciences in the group headed by Prof. Giuseppe Palleschi at University of “Tor Vergata”. He leads the uninanobiosensors Lab (uninanobiosensors.com) and his research includes the development of Electrochemical (bio)sensors, Paper-Based devices, Nanomotors and Nanomaterials. He spent periods abroad in Finland, UK, USA, Germany and Spain. He published more than 45 papers on peer-reviewed journals, with H-index of 27, >2000 citations. In 2018 and 2019 he has been named Best Young Researcher in Bio-Analytical Chemistry and Analytical Chemistry, respectively (by Italian Chemical Society), and in 2020 he has been inserted in World’s Top 2% Scientists. He is in the board of the Chemical Cultural Diffusion group and of the Young Group of Italian Chemical Society. He is the Chair of AMYC-BIOMED, a multi-disciplinary conference for young chemists in the biomedical sciences. He is active in communicating science to non-specialized audience through TV shows, radio and magazine. Find Stefano on Twitter: @S_Cinti87

Find more ChemComm Milestones news on our Twitter: @ChemCommun

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Ashlee Howarth

We are delighted to introduce Ashlee Howarth, our latest #ChemComm1st author. Ashlee’s first independent research article was published in ChemComm in May. Her Communication ‘Synthetic approaches for accessing rare-earth analogues of UiO-66‘ has now been added to our growing collection, ChemComm Milestones – First Independent Articles. Find out more about Ashlee in our interview with her below.

Our ChemComm Milestones interview with Ashlee Howarth

What are the main areas of research in your lab and what motivated you to take this direction?
In my research lab at Concordia, we are interested in the design and synthesis of new rare-earth metal–organic frameworks comprised of multinuclear cluster nodes. We take inspiration from the field of zirconium-based MOFs – materials that I worked with extensively during my postdoctoral studies – where the vast majority of Zr-MOFs contain hexanuclear cluster nodes as building blocks. We are interested in using rare-earth metals to construct MOFs because of the possibility to generate several multinuclear rare-earth clusters (e.g., tetranuclear, hexanuclear, nonanuclear, etc) with varying geometry and connectivity. The diversity of cluster building blocks that are accessible, allows us to synthesize structures that are not as easily attainable (or not attainable at all) using other metals. We are still in the early stages of this research, but our long-term goals are to study these materials for the adsorption, catalytic breakdown, and chemical sensing of hazardous analytes.

Can you set this article in a wider context?
UiO-66 is a zirconium-based MOF that was first reported by researchers from the University of Oslo in 2008 (https://doi.org/10.1021/ja8057953). Since this initial report, there have been over 4,000 publications on the topic of UiO-66. This is because it is a highly robust MOF, built from hexanuclear zirconium clusters bridged by simple terephthalic acid linkers, and has been shown to be potentially useful for applications ranging from gas capture to catalysis to drug delivery. In this article, we report on the synthesis and characterization of eight rare-earth analogues of UiO-66, specifically the Y(III), Eu(III), Gd(III), Tb(III), Ho(III), Er(III), Tm(III), and Yb(III) analogue. We hope to see these rare-earth analogues of UiO-66 become extensively studied over the next decade, just like the Zr-based prototype.

What do you hope your lab can achieve in the coming year?
In the upcoming year, I hope that we can continue to build foundational knowledge with regards to the tips and tricks for synthesizing rare-earth cluster-based MOFs. This includes expanding on knowledge of de novo as well as post-synthetic modification techniques, purification and activation strategies, and methods for characterizing the chemical and physical properties of these new materials.

Describe your journey to becoming an independent researcher.
My journey to becoming an independent researcher began when I completed an Honours specialization project as an undergraduate student in the Corrigan lab at the University of Western Ontario. This was when I first learned about research, the possibility of graduate school, and the steps required to become an independent researcher in academia. From there my love for research, and specifically inorganic materials chemistry, continued to grow as a PhD student in the Wolf lab at the University of British Columbia. I was first introduced to MOFs during my postdoctoral studies in the Farha and Hupp groups at Northwestern University, and it was during my 3 years as a postdoc that I grew to love these materials. I was (and continue to be) fascinated by the fundamental aspects of MOF chemistry, discovering new building blocks, making new network structures, and growing crystals. I also love that MOFs have many potential practical applications due to their high porosities, surface areas, and tunable properties. As such, when finishing my postdoctoral studies I knew I wanted to continue working with MOFs – but I wanted to branch out from working with Zr-MOFs and start exploring the use of rare-earth elements. It’s been quite challenging working on a subclass of MOFs that are entirely new to me, but it’s also been very rewarding, and my students and I learn something new every day.

What is the best piece of advice you have ever been given?
It’s quite hard to choose just one piece of advice, since I have been given lots of great advice from my mentors over the years. One piece of advice that has always stuck with me, which came from my undergraduate supervisor John F. Corrigan, is to always be yourself. It sounds simple enough, but I was giving a practice presentation for my honours thesis defense and I had made pink PowerPoint slides. One of the other students in the group suggested I change the colour since pink might not be the most obvious choice for a professional scientific presentation. John told me to leave the colour if I liked it, and to always be myself. I’ve carried that advice with me throughout my scientific career and it has helped to give me confidence in myself as a scientist – even at times when I don’t always feel like I belong.

Why did you choose to publish in ChemComm?
ChemComm is a great journal with an excellent reputation in chemistry. I always wanted to publish in ChemComm when I was a graduate student but never had the opportunity. When my student, Pedro Donnarumma, was able to find the synthetic conditions necessary to make the first ever rare-earth analogues of UiO-66, I thought that ChemComm would be the perfect venue to disseminate the results quickly and have high visibility within the MOF and materials chemistry communities. I’m very proud to say that my first publication as an independent researcher is in ChemComm and I’m especially proud of the students Pedro Donnarumma (lead author, MSc graduate), Sahara Frojmovic (undergraduate Honours student), Paola Marino (MSc Student), and Hudson Bicalho (PhD candidate) who worked so hard to make it possible! The work also wouldn’t be possible without our awesome collaborator and expert crystallographer Dr. Hatem Titi.

Ashlee J. Howarth was born and raised in London, Ontario. She obtained her undergraduate degree from the University of Western Ontario in 2009, and then went on to do her PhD in inorganic materials chemistry at the University of British Columbia under the supervision of Michael O. Wolf. Before joining the faculty at Concordia, she completed an NSERC Postdoctoral Fellowship at Northwestern University with Joseph T. Hupp and Omar K. Farha. In 2018, Ashlee was recognized by Forbes Magazine as a “30 under 30” in Science for her contributions to research in the field of wastewater treatment, and the detoxification of chemical warfare agents. In 2019, she won the UBC Chemistry Young Alumnus Award, which recognizes a young alumnus whose accomplishments are of such excellence that they provide inspiration and leadership to students and other young alumni. At Concordia, Ashlee is the Concordia University Research Chair in Metal–Organic Frameworks, and the Howarth group is focused on the design and synthesis of rare-earth metal–organic frameworks targeting applications in wastewater remediation, catalysis, and chemical sensing.

 

Explore more ChemComm Milestones news and updates on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Robert Godin

ChemComm Milestones – Robert Godin

Robert Godin reached an exciting milestone this year when he chose to publish his first independent article in ChemComm. You can read Robert’s #ChemComm1st article ‘Experimental determination of charge carrier dynamics in carbon nitride heterojunctions‘ in our growing collection, ChemComm Milestones – First Independent Authors. We are also pleased to confirm that Robert’s significant research now features in our 2021 Emerging Investigators collection too.

To find out more about Robert’s experiences as a first-time author, watch the video interview below.

ChemComm Milestones interview with Robert Godin:

Explore more #ChemComm1st content on our Twitter: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Erli Lu

We were really excited to speak to Erli Lu about his #ChemComm1st article ‘A monomeric methyllithium complex: synthesis and structure‘. This recently published Communication is available to read in our full collection ChemComm Milestones – First Independent Articles. It’s also Open Access.

Find out about Erli and his research in our interview below.

What are the main areas of research in your lab and what motivated you to take this direction?
The main research area of my lab is group-1 and group-2 metal coordination chemistry, for example, lithium, sodium, potassium, magnesium and calcium. Since my PhD, I have studied coordination chemistry of some of the most obscure metals, such as rare-earth and actinide metals. Compared to them, group-1 and 2 metal coordination chemistry are thought to be ‘well-established’. But actually, if looking closely, there are many knowledge gaps in this area. To fill these gaps, I set our research targets towards these ‘familiar strangers’.

Can you set this article in a wider context?
This article is our first step to unveil the unknown face of some of the most common chemical reagents, in this case, organolithium reagents. Organolithium, for example, butyllithium, is arguably the most important organometallic reagents, and the parent of organometallic chemistry. The vital roles of organolithium in numerous organic reactions depend on their aggregates—they exist as oligomers but are postulated to react via the monomers. Chemists want to isolate the monomers, to understand the reaction mechanisms, but this is a formidable task: the monomers are super-reactive and very easy to decompose. In this article, we isolated the first monomer of the archetypical organolithium reagent: methyllithium.

What do you hope your lab can achieve in the coming year?
More exciting complexes, of course! And more papers, for sure! We hope to change an existing prejudice held by chemists that the group-1 and 2 chemistry are not as versatile as d-block and f-block metals, just because they have been studied for over a century.

Describe your journey to becoming an independent researcher.
I decided to pursue a research career since my 2nd PhD year—when I made my first important discovery (the first scandium terminal imide) in Yaofeng’s group at SIOC. This work was published in ChemComm in 2010 and has inspired, influenced and encouraged me since then. The training of a coordination chemist is similar to a Jedi Knight for me: it’s nearly impossible to succeed without a local guru’s help and guidance. I was lucky to meet my two ‘Jedi Masters’: Prof. Yaofeng Chen and Prof. Steve Liddle, who helped me to grow into an independent researcher.

What is the best piece of advice you have ever been given?
‘Grit teeth and carry on’—It is very often (maybe too often) easy to feel frustrated, if not desperate, in a research career. But persistence will be rewarded eventually.

Why did you choose to publish in ChemComm?
I have published 4 Communications in ChemComm, including some of my most important results. From my experience, the two biggest advantages of ChemComm against competitor journals are the rapid reviewing procedure and the professional editorial teams. The handling editors of ChemComm are active academics and do the research themselves—this is very important to ensure a fair and reasonable scientific judgement about a manuscript. Another reason to publish in ChemComm is supporting our local Chemical Society—though it is a less popular practice nowadays than before.

Erli Lu was born in Hefei, China, in 1984. His university degree (BEng) was awarded in 2006 by Tianjin Polytechnic University (China) in Polymer Material Science and Engineering. He joined Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences in 2006, studying rare-earth metal coordination chemistry in the Yaofeng Chen group and was awarded the PhD in 2012. In the same year, he moved to the UK as a postdoc researcher with an EU Marie Curie International Incoming Fellowship to join the Steve Liddle group at the University of Nottingham, investigating actinide coordination chemistry. He had stayed in the Liddle group at Nottingham and Manchester from 06.2012-09.2019, before starting his independent career at Newcastle University, as a Newcastle University Academic Track (NUAcT) Fellow. Erli’s group at Newcastle investigates new aspects of group-1 & 2 metal coordination chemistry, including new highly reactive organolithium complexes, low-valent group-1/2 complexes, and their applications in catalysis and energy storage. Find Erli on Twitter: @erli_lu

 

Enjoying #ChemCommMilestones? Follow all of the news and updates on our Twitter @ChemCommun.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)