We are excited to share the success of Storm Hassell-Hart’s first-time independent article in ChemComm; “Brønsted acid-mediated thiazole synthesis from sulfoxonium ylides” included in the full milestones collection.
Read our interview with Storm below.
What are the main areas of research in your lab and what motivated you to take this direction?
As in my career, the research in my lab aims to use and develop synthetic organic chemistry with medicinal chemistry or biological applications.
Our current research is divided into two main areas.
- The synthesis and application of sulfoxonium ylides. These species are typically used as surrogates for the synthetically powerful, but unstable, diazo compounds. In comparison to diazo compounds, these compounds are typically stable at room temperature and have no associated risks of explosion. Despite these advantages, research into sulfoxonium ylides remains relatively underexplored. Our research is therefore aimed at improving methods to access these species and expanding the transformations they can be used for.
- The development of cheap and affordable robotic systems for drug discovery and synthesis. We aim to develop and showcase new robotic protocols for synthesis, using systems which are accessible for any research laboratory.
After conducting my Master’s project in the area of total synthesis, I wanted to apply my love of organic synthesis to help others. My major motivation is to conduct research that others will use, whether it be a new/improved synthetic method for medicinally chemistry relevant molecules, or the development new technologies. I believe that organic synthesis has the potential to impact a huge range of fields and want to be part of that.
Can you set this article in a wider context?
Despite being developed well over a century ago, the Hantzsch thiazole synthesis remains the most common method to synthesise thiazoles, a common motif in drug discovery and natural products. One of the major drawbacks of the methodology is the use of potentially unstable and toxic α-halo carbonyls. New methods have been developed to avoid these by using safe/stable sulfoxonium ylides, but these have required expensive transition metals, forcing conditions, or suffered from low scope. Our new work addresses all these issues. Using a cheap commercial acid catalyst and mild conditions, we have developed conditions to prepare huge range of thiazoles from sulfoxonium ylides. The mild methods can be used on small scale or could be translated to industrial scales, without any safety issues.
What do you hope your lab can achieve in the coming year?
In the coming year we hope to present a Lewis acid catalysed sulfoxonium ylide transformation we have been working on, as well as our work optimising an unexpected side-reaction from our thiazole work. We also have an active project ongoing for the development of automated cross-couplings which we hope to present in the near future.
Describe your journey to becoming an independent researcher.
There have been many key moments which have led me to where I am today and I am indebted to a huge amount of people along the way, most notably all my supervisors. The amazing advice and training they have given me has made me into the scientist I am today.
Doing an industrial PhD with GSK/University of Strathclyde, gave me the opportunity to experience both the industrial and academic sides of organic chemistry. After graduating, I decided that I was most interested in more challenging organic synthesis and moved to the University of Sussex for my first postdoctoral position. Here I was exposed to a huge range of different synthetic and medical chemistry projects which helped develop my independence and ideas. This was further nurtured at UCL, encouraging me to test ideas and explore my own research. In 2022 I returned to Sussex as a lecturer, and have continued to build on these teachings and hopefully pass them on to my own students.
What is the best piece of advice you have ever been given?
My (much missed) industrial PhD supervisor, Dr Vipulkumar Patel, gave me the advice “to do what you love”. At the time, I was finishing my PhD and debating whether I wanted to stay in industry or move to an academic postdoctoral position. Vipul sat me down and had a frank chat with me about what made me happy and what I enjoyed and it made my choice clear. I try to always carry that advice with me, even when another “simple” experiment has gone disastrously wrong on a Friday evening!
Why did you choose to publish in ChemComm?
I chose to publish in ChemComm due to its high regard and its diverse organic and medicinal readership. The objective of our research is to provide methods that will be widely applicable and the journal seemed a great fit to showcase our recent results.
Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)