Archive for the ‘ChemComm Milestone’ Category

ChemComm Milestones – Storm Hassell-Hart

We are excited to share the success of Storm Hassell-Hart’s first-time independent article in ChemComm; “Brønsted acid-mediated thiazole synthesis from sulfoxonium ylides” included in the full milestones collection. 

Read our interview with Storm below.

What are the main areas of research in your lab and what motivated you to take this direction?

As in my career, the research in my lab aims to use and develop synthetic organic chemistry with medicinal chemistry or biological applications.

Our current research is divided into two main areas.

  1. The synthesis and application of sulfoxonium ylides. These species are typically used as surrogates for the synthetically powerful, but unstable, diazo compounds. In comparison to diazo compounds, these compounds are typically stable at room temperature and have no associated risks of explosion. Despite these advantages, research into sulfoxonium ylides remains relatively underexplored. Our research is therefore aimed at improving methods to access these species and expanding the transformations they can be used for.
  2. The development of cheap and affordable robotic systems for drug discovery and synthesis. We aim to develop and showcase new robotic protocols for synthesis, using systems which are accessible for any research laboratory.

After conducting my Master’s project in the area of total synthesis, I wanted to apply my love of organic synthesis to help others. My major motivation is to conduct research that others will use, whether it be a new/improved synthetic method for medicinally chemistry relevant molecules, or the development new technologies. I believe that organic synthesis has the potential to impact a huge range of fields and want to be part of that.

Can you set this article in a wider context?

Despite being developed well over a century ago, the Hantzsch thiazole synthesis remains the most common method to synthesise thiazoles, a common motif in drug discovery and natural products. One of the major drawbacks of the methodology is the use of potentially unstable and toxic α-halo carbonyls. New methods have been developed to avoid these by using safe/stable sulfoxonium ylides, but these have required expensive transition metals, forcing conditions, or suffered from low scope. Our new work addresses all these issues. Using a cheap commercial acid catalyst and mild conditions, we have developed conditions to prepare huge range of thiazoles from sulfoxonium ylides. The mild methods can be used on small scale or could be translated to industrial scales, without any safety issues.

What do you hope your lab can achieve in the coming year?

In the coming year we hope to present a Lewis acid catalysed sulfoxonium ylide transformation we have been working on, as well as our work optimising an unexpected side-reaction from our thiazole work. We also have an active project ongoing for the development of automated cross-couplings which we hope to present in the near future.

Describe your journey to becoming an independent researcher.

There have been many key moments which have led me to where I am today and I am indebted to a huge amount of people along the way, most notably all my supervisors. The amazing advice and training they have given me has made me into the scientist I am today.

Doing an industrial PhD with GSK/University of Strathclyde, gave me the opportunity to experience both the industrial and academic sides of organic chemistry. After graduating, I decided that I was most interested in more challenging organic synthesis and moved to the University of Sussex for my first postdoctoral position. Here I was exposed to a huge range of different synthetic and medical chemistry projects which helped develop my independence and ideas. This was further nurtured at UCL, encouraging me to test ideas and explore my own research. In 2022 I returned to Sussex as a lecturer, and have continued to build on these teachings and hopefully pass them on to my own students.

What is the best piece of advice you have ever been given?

My (much missed) industrial PhD supervisor, Dr Vipulkumar Patel, gave me the advice “to do what you love”. At the time, I was finishing my PhD and debating whether I wanted to stay in industry or move to an academic postdoctoral position. Vipul sat me down and had a frank chat with me about what made me happy and what I enjoyed and it made my choice clear. I try to always carry that advice with me, even when another “simple” experiment has gone disastrously wrong on a Friday evening!

Why did you choose to publish in ChemComm?

I chose to publish in ChemComm due to its high regard and its diverse organic and medicinal readership. The objective of our research is to provide methods that will be widely applicable and the journal seemed a great fit to showcase our recent results.

​​

  Storm Hassell-Hart is a lecturer at the University of Sussex. He obtained his BA and MSci from the University of Cambridge in Natural Sciences, conducting his MSci research in the group of Professor Steve Ley. He was awarded his PhD as part of the GSK/University of Strathclyde collaborative PhD scheme (2017) under the supervision of Professor William Kerr and Dr Vipulkumar Patel. He then moved to the University of Sussex to join the group of Professor John Spencer, working on a range of synthetic and medicinal chemistry projects. In 2021, he moved to UCL, joining the group of Professor Anderson, exploring the synthesis of luciferin and oxyluciferin analogues. Finally, in 2022 he returned to the University of Sussex to take up a lecturing position. Throughout his career, Storm’s research interests have focused on the use of synthetic chemistry to enable cutting edge biological and medicinal chemistry projects.

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Moritz Senger

We are excited to share the success of Moritz Senger’s first-time independent article in ChemComm; “Secondary structure changes as the potential H2 sensing mechanism of group D [FeFe]-hydrogenases” included in the full milestones collection. 

Read our interview with Moritz below.

What are the main areas of research in your lab and what motivated you to take this direction?

We perform fundamental research on enzymes to learn about sustainable catalysis in Nature. Thereby we derive molecular principles which inspire synthetic catalyst design as well as supporting their exploitation in bio-tech applications.

Our current research focus lies on enzymes catalysing H2 turnover with high efficiencies, [FeFe]-hydrogenases, targeting green H2 production.

Currently, 95% of H2 is produced from fossil resources, which generates significant CO2 emissions. Green H2 gas has the potential to reduce the CO2 footprint of e.g. the Haber-Bosch process, steel production and transportation. Additionally, green H2 production will allow to store seasonal renewable energies (wind, sunlight) into chemical energy, a process gaining rapidly importance.

Can you set this article in a wider context?

[FeFe]-hydrogenases are a prime example how nature found ways to use identical cofactors to facilitate completely different functions by modulating the second and third coordination sphere. For me it is fascinating how the cofactor of the Group A [FeFe]-hydrogenases which we primarily associate with efficient H2 turnover, facilitates H2 sensing when in-cooperated in the protein fold of the specific [FeFe]-hydrogenase from Group D (TamHydS) which we investigated in this article.

While in both enzymes the redox chemistry at the cofactor seems to be identical, the proteins appear to react differently to this similar stimulus. In the catalytically very active Group A [FeFe]-hydrogenase we observe a rearrangement of hydrogen bonds optimising the geometry of the proton transfer pathway to the cofactor for fast H2 catalysis. In contrast in the H2 sensory Group D [FeFe]-hydrogenase, TamHydS, the same redox event triggers a rearrangement in the secondary structure of the protein that is likely involved in signal transduction to other proteins found in the genome.

What do you hope your lab can achieve in the coming year?

Science wise in the next year we will focus on H2 catalysis again. We aim to solve structures of [FeFe]-hydrogenases in defined reaction intermediates. These specific structures will complement the spectroscopic work of the last decades. Evaluating the combination of functional and structural information will help us to identify the molecular principles which make [FeFe]-hydrogenases such efficient H2 evolution catalysts.

As a research group we are still recruiting and in the coming year we hope to find postdoctoral researchers with physical chemistry and/or structural biology background completing our team. If you would like to join our discoveries in enzymatic catalysis feel free to get in contact.

Describe your journey to becoming an independent researcher.

From a foundation in Physics, I specialised in Biophysical Chemistry with a focus on spectroscopic description of redox enzymes. In my PhD I followed my passion for sustainable catalysis and investigated the reaction mechanism of [FeFe]-hydrogenases spectroscopically. The development of novel spectroscopic approaches that allowed stabilizing and characterising unknown reaction intermediates in situ resulted in a complete re-evaluation of the catalytic cycle of [FeFe]-hydrogenases.

My postdoc at Freie Universität Berlin, Germany, with Prof. Joachim Heberle inspired me to artificially photoactivate redox enzymes. An approach that I refined during my Marie Skłodowska-Curie postdoc in the Ångströmlaboratoriet at Uppsala Universitet (Sweden) with Prof. Leif Hammarström. During my postdoc time with Prof. Gustav Berggren I further focused on topics related to my current operation comprising method development and applications in light driven H2 production in potentially self-healing living cell systems.

Since March 2024 I established my own research group in the Biochemistry Program of Uppsala Universitet. Here we target fundamental questions in enzymatic catalysis which requires my group to cover the full range of biochemical, physical chemistry and structural biology aspects.

What is the best piece of advice you have ever been given?

”Wiederholung ist die Mutter der Wissenschaft” which loosely translates to “Repetition is the mother of science”. A piece of advice I was given early in my PhD days and which turned out to not lose any of its validity.

Why did you choose to publish in ChemComm?

Personally, I appreciate the communication format to make findings fast and early accessible. With its high standards and broad readership ChemComm was the logical choice for our study.

​​

  Moritz Senger’s fundamental research centres on bio-catalysis in enzymes. He leads a research group at the intersection of physics, chemistry and biology at Uppsala University.

He obtained a PhD in Physics (2018) at Freie Universität Berlin under the supervision of Prof. Joachim Heberle. After a postdoc in Berlin he moved to Uppsala University in Sweden (2020) and joined the groups of Prof. Leif Hammarström and Prof. Gustav Berggren as a Marie Skłodowska-Curie postdoctoral researcher. Since March 2024 his research group in the Biochemistry Program of Uppsala University investigates the molecular mechanisms of enzymatic catalysis for sustainable energy solutions.

https://www.uu.se/en/department/chemistry-bmc/research/biochemistry/senger-group

https://www.linkedin.com/in/moritz-senger-0859a42b1/

https://twitter.com/MoritzSenger

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Abhishek Kumar

We are excited to share the success of Abhishek Kumar’s first-time independent article in ChemComm; “Removal of mercury and lead ions from water by bioinspired N3Se3 type small sized moieties” included in the full milestones collection. 

Read our interview with Abhishek below.

What are the main areas of research in your lab and what motivated you to take this direction?

My lab is primarily interested in design, development and evaluation of organoselenium species for application in (a) removal of toxic metal ions and (b) photocatalysis.

There are two reasons for taking up the current direction of research.

(i) Selenium is an essential micronutrient and plays a critical role in reducing oxidative stress in humans. It is also known to play an important role in detoxification of heavy metal ions from human body by forming metal-selenium bonded compounds. However, it is surprising that most of the systems developed for the removal of heavy metal ions continue to focus primarily on sulfur which is the lighter congener of selenium.

(ii) The photoactive nature of selenium is well established in the form of various metal selenides. However, the use of organoselenium compounds as photocatalyst remains largely unexplored.

The comparatively lower attention on organoselenium chemistry is the reason behind these gaps. Therefore, the main motivation to work in this direction is to contribute towards bringing out newer design aspects and their wider applications to further enrich organoselenium chemistry.

Can you set this article in a wider context?

Due to our current pace of development, there has been an increasing concentration of toxic heavy metal ions in the environment particularly water. The chronic ingestion of relatively small daily doses of these pollutants is associated with dramatic overall health effects in humans. A serious effort is required to reduce usage and at the same time removal of already circulating ions. The biological studies have clearly indicated “selenophilicity” i.e. selenium loving nature is the reason behind detoxification and removal of these ions from human body with the concomitant loss of activity of selenoproteins. However, it is appalling that almost no research effort in selenium chemistry has been devoted to synthesis and identification of selenium based practical and cost-effective systems for remediation and removal of the toxic metal ions. In the current research project we are focusing on designing, synthesis and evaluation of practical, cost effective selenium based moieties for removal of toxic metal ions.

What do you hope your lab can achieve in the coming year?

In the coming year we hope to design and bring to fruition better organoselenium moieties for removal of multiple toxic metal ions. At the same time we also hope to bring out our first results on photocatalytic aspects of organoselenium moieties in the coming year.

Describe your journey to becoming an independent researcher.

During my Ph.D. from IIT Delhi under the supervision of Prof. Jai Deo Singh I worked in the area of development of organochalcogen species and their potential applications as chemical sensors. After completing my Ph.D. in 2012 I moved to Korea Research Institute of Chemical Technology (KRICT), South Korea to work with Prof. Dr. Jin-Ook Baeg as a postdoctoral researcher in the area of photocatalyst-biocatalyst integrated artificial photosynthetic systems (2012-2016). After returning from South Korea, I was selected by Council of Scientific & Industrial Research (CSIR) for Senior Research Associateship (SRA-Pool Scientist) and consequently joined IIT Delhi as SRA in June 2017. In January 2020, I joined as Assistant Professor in Department of Chemistry, Institute of Science, Banaras Hindu University (BHU) where I am currently pursuing my independent research career.

What is the best piece of advice you have ever been given?

The best piece of advice was given to me by my Ph.D. supervisor Prof. Jai Deo Singh “be patient in research and don’t lose focus or be disheartened by negative results”.

Why did you choose to publish in ChemComm?

ChemComm is an internationally recognised journal for publishing high quality research work across the entire spectrum of chemical sciences.  Due to this wide readership my work published in the journal would be noticed by chemists working in all branches of chemistry. The fast publication time is an added benefit of publishing in ChemComm.

​​

  Abhishek Kumar received his B.Sc. (2002) from University of Delhi. He then joined Indian Institute of Technology Delhi (IIT Delhi) for M.Sc. (2004) followed by Ph.D. (2012) in Chemistry under the supervision of Prof. Jai Deo Singh. He then moved to the research group of Prof. Dr. Jin-Ook Baeg at Korea Research Institute of Chemical Technology (KRICT), South Korea to work as a postdoctoral researcher (2012-2016). After returning from South Korea, he briefly joined Department of Chemistry, University of Delhi as Assistant Professor (Guest) before moving to IIT Delhi as CSIR-Senior Research Associate (Pool Scientist) in June 2017. In January 2020 he joined as Assistant Professor in Department of Chemistry, I.Sc., Banaras Hindu University (BHU), where he is currently pursuing his independent research career. His areas of interest are in the field of development of organoselenium species for removal of toxic metal ions and photocatalysis.

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Puja Prasad

We are excited to share the success of Puja Prasad’s first-time independent article in ChemComm; “Aggregation-induced emission luminogens for latent fingerprint detection” included in the full milestones collection. 

Read our interview with Puja below.

What are the main areas of research in your lab and what motivated you to take this direction?

Our laboratory is working on the synthesis and applications of metal complexes in biosensing and therapeutics. Presently we are broadly working on three areas: (a) development of metal-based complexes as antibacterial and anticancer agents, (b) design of high-throughput sensor arrays for pathogen identification and antimicrobial susceptibility test, and (c) development of novel luminogens probes having the unique property of aggregation-induced emission (AIE) for the detection of amyloids, metal ions or visualization of latent fingerprinting (LFP), etc.

Cancer and infectious diseases are the leading causes of death worldwide. The development of novel diagnostic and therapeutic agents is essential for the efficient treatment of these diseases. Therefore, we are motivated in designing aggregation-induced emission luminogens (AIEgens) theranostic probes to combat both of these deadly diseases

Can you set this article in a wider context?

Latent fingerprinting (LFP) plays an important role in the identification of individuals mainly in the realm of criminal investigation. Our highlight article has shown the development of AIEgens in the field of LFP detection. AIEgens with opulent photophysical properties, such as large Stokes’ shifts, high quantum yields, long luminescence lifetimes, and high photostability have emerged as potential candidates to provide prima facie evidence of individual identity.

This highlight focuses on the structural design of AIE-active molecules and their interactions involved in LFP detection. In addition, several future perspectives and new strategies have been highlighted for overcoming the limitations associated with AIEgens in LFP visualization. We believe that this “highlight” will help in the rational design of AIE-active molecules and inspire the scientific community to explore the full potential of AIE materials in the field of forensic and biometric sciences.

What do you hope your lab can achieve in the coming year?

In the coming year, our lab would like to explore the application of AIEgens in various biosensing and therapies, and contribute significantly to the scientific community.

Describe your journey to becoming an independent researcher.

The turning point in my life was when I got selected for an integrated Ph.D. program at the Indian Institute of Science (IISc) Bangalore, a highly reputed research institute in India. During my master’s, I became interested in chemical biology and medicinal chemistry. Therefore, I joined Ph.D. in medicinal inorganic chemistry laboratory and worked on design and synthesis of oxovanadium(IV) complexes for the application in photodynamic therapy (PDT) under the supervision of Prof. Akhil R. Chakravarty in the Department of Inorganic and Physical Chemistry, IISc Bangalore, India. After completing my Ph.D. in 2014, I was offered a postdoctoral position at Rutgers University, USA and worked on a nanoparticle-hydrogel composite system for the delivery of anti-inflammatory drugs with Prof. Patrick. J. Sinko. I was awarded a National Postdoctoral Fellowship (NPDF) and CSIR-Senior Research Associate position in 2016 and 2019, respectively, and worked under the mentorship of Prof. Shalini Gupta at the Indian Institute of Technology (IIT) Delhi. At IIT Delhi, I was involved in developing novel platform strategies for targeting, removal and screening of bacterial infections to combat antimicrobial resistance (AMR). In July 2022, I joined as an Assistant Professor at Amity University Uttar Pradesh, Noida.

What is the best piece of advice you have ever been given?

One of the best pieces of advice ever given to me was to “carefully analyze the data after each experiment.”

Why did you choose to publish in ChemComm?

I chose to publish in Chem Comm because it is an internationally recognized and highly reputed journal. Further, Chem Comm has a wide readership with a broad range of influential and diverse fields of audience. This will help to increase the visibility of my group within the scientific community.

​​

  Puja Prasad received her B.Sc. from Calcutta University. She received her M.Sc. and Ph.D. degrees from the Indian Institute of Science Bangalore in 2014 under the supervision of Prof. Akhil R. Chakravarty. She then joined Prof. Patrick J. Sinko’s group, Rutgers University, USA, for her postdoctoral research (2014–2015). Furthermore, she received a prestigious National Postdoctoral Fellowship (2016–2018) and was a CSIR-Senior Research Associate (2019–2022) and worked under the mentorship of Prof. Shalini Gupta, Indian Institute of Technology Delhi. She joined Amity University Uttar Pradesh in the year 2022 as an Assistant Professor. Her research interest includes development of AIEgens for diagnostic and therapeutic applications.

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Kate Marczenko

We are excited to share the success of Kate Marczenko’s first-time independent article in ChemComm; “Polymorph driven diversification of photosalient responses in a zinc(ii) coordination complexincluded in the full milestones collection. 

Read our interview with Kate below.

What are the main areas of research in your lab and what motivated you to take this direction?

We are very interested in exploiting intra- and inter-molecular design strategies for imparting stability, unusual reactivity, and/or targeted responses in molecular crystals. This direction is largely built from my continuing interest in crystallography and structure-property relationships. Crystal structures contain a wealth of information that can reveal unique insights into the behavior and applications of crystalline materials. By understanding these structures, we can tailor their performance in various applications, such as stimuli-responsive materials, energy conversion, and sensing technologies. Our research aims to utilize these structure-property relationships to develop innovative crystalline materials.

Can you set this article in a wider context?

Light-responsive materials have gained significant attention in materials science due to their dynamic properties under light stimuli. They are valuable for diverse applications such as energy storage, biomaterials, sensing, and actuation. Recent studies have focused on tailoring the actuating properties of functional molecular crystals to regulate dynamic properties, including the Photosalient Effect (PSE). The PSE results from sudden and rapid observable actuation of crystalline materials in response to light. The degree, or magnitude, of the PSE is closely related to structural transformations during the photochemical reaction. However, details pertaining to these transformations are difficult to ascertain due to significant disintegration of the material and loss of crystallinity accompanying the PSE.

This article presents a novel phase of a Zn(II) coordination complex that undergoes a photochemical [2+2] cycloaddition reaction via one of its 1-(4-naphthylvinyl)pyridine ligands in the solid state. This transformation is accompanied by (i) a moderate photosalient effect and (ii) a single-crystal to single-crystal transition, allowing for continuous monitoring of the unit-cell parameters and therefore internal crystalline strain. Our novel form highlights the importance of structure-property relationships and serves as a bridge in understanding the diversification of photo-mechanical responses among polymorphs of the same compound. This work highlights the role of polymorphs in fine-tuning the magnitude of the PSE and challenges previous notions about the necessity of substantial anisotropic changes for observable photomechanical effects.

What do you hope your lab can achieve in the coming year?

The next year will be very exciting for me professionally and personally! I am expecting my first child and will be taking some time off for parental leave. I hope this inspires people in STEM to continuously reach for fulfillment in all aspects of their life (whatever that may look like!). I also hope my lab can continue to find excitement and make strides in understanding and manipulating crystal structures to unlock new functionalities and applications.

Describe your journey to becoming an independent researcher.

I obtained my B.Sc. in Chemistry from the University of Guelph (2016) and a M.Sc. in Inorganic Chemistry from McMaster University (2018). My Master’s research focused on transforming shock-sensitive xenon oxides to shock-insensitive materials. In 2018, I moved to Atlantic Canada to complete my Ph.D. in Inorganic Chemistry at Dalhousie University (2021). My Ph.D. research examined the chemistry of heavy Group 15 amides. In 2021, I returned to the University of Guelph as a Crystallographer and Instructor. I started my independent career at Carleton University (Ottawa, ON) a little less than 2 years later, on June 1, 2023.

What is the best piece of advice you have ever been given?

Ironically, the best advice I’ve ever gotten is to not take every piece of advice I hear. Instead, I should pick and choose what works for me. By doing this, I’ve found that I can carve out my own path, using the advice that really fits with my own experiences and goals.

Why did you choose to publish in ChemComm?

I chose to publish in ChemComm because it is an internationally recognized journal with a strong reputation within the field of chemistry. Its broad readership ensures that our research reaches a diverse and influential audience, which we hope will promote new collaborations.

  ​Kate Marczenko obtained her B.Sc. in Chemistry from the University of Guelph (Guelph, ON). She completed an honours project in the laboratory of Prof. Michael Denk and held a work placement in the laboratory of Prof. Dmitriy Soldatov. Subsequently, Kate obtained a M.Sc. in noble gas and fluorine Chemistry under the supervision of Prof. Gary Schrobilgen at McMaster University (Hamilton, ON). She worked on transforming shock-sensitive xenon oxides to shock-insensitive materials. In 2018, Kate moved to Eastern Canada to join the group of Prof. Saurabh Chitnis at Dalhousie University (Halifax, NS). Her Ph.D. thesis examined the chemistry of heavy Group 15 amides. In 2021, Kate returned to the University of Guelph as a Crystallographer and Instructor. Kate started at Carleton University (Ottawa, ON) on June 1, 2023.

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Arnaud Thevenon

We are excited to share the success of Arnaud Thevenon’s first-time independent article in ChemComm; “A π-extended β-diketiminate ligand via a templated Scholl approach included in the full milestones collection. 

Read our interview with Arnaud below.

What are the main areas of research in your lab and what motivated you to take this direction?

Catalysis is playing and will play an essential role in the energy, resource, and material transitions that our society is facing. In my research group, we aim at developing new concepts in thermo- / electro- / photo-chemical catalysis to contribute to these transitions. Our main research areas cover three topics: 1) exploring homogeneous molecular mimics of Single Atom Catalysts for the electrochemical conversion of small molecules; 2) developing new catalysts to convert waste and renewable feedstocks into polymers that are intrinsically circular by design; 3) creating new (electro/photochemical) post-polymerization modification methods to incorporate new functionalities into polymers.

Can you set this article in a wider context?

The discovery of Single Atom Catalysts (SACs) is one of the most exciting recent breakthroughs in the realm of (electro-)catalysis. Constituted of isolated, individual transition metal atoms dispersed on, and/or coordinated with, the surface of a heterogeneous support, SACs enable the reasonable use of abundant metal resources and facilitate atom economy. Nowadays, they are widely used to catalyze many thermo-, photo- and electrochemical reactions (e.g., small molecules conversion, biomass valorization). However, the development of SACs with higher performances (e.g., new selectivity profile, higher activity) is now facing a wall. The heterogeneity of their active sites precludes mechanistic studies and the understanding of the structure/activity/selectivity relationship remain obscure. More precisely, it is still unknown how the coordination environment of active sites and how support/active site interactions affect the final performance of a SAC during a chemical reaction. In this project, we aim at creating molecular models of active sites of SAC and investigate their reactivity in presence of small molecules such as CO2 to shed light on the synergy between the extended 𝛑-system and the metal center during catalysis.

What do you hope your lab can achieve in the coming year?

In the coming year, I hope we will make good progress in investigating/understanding the reactivity of first row transition metals coordinated to our benzo[f,g]tetracene BDI ligand in presence of various small molecules under reductive conditions.

Describe your journey to becoming an independent researcher.

My journey to becoming an independent researcher started at EPFL. During my undergraduate studies, I worked with Prof. Gabor Laurenczy on the Ru-catalyzed decomposition of formic acid. I then had the chance to conduct my Master thesis in the group of Prof. Paula Diaconescu, at UCLA, on redox-active catalysts for the polymerization of cyclic lactones. I subsequently moved to the University of Oxford, in the group of Prof. Charlotte K. Williams, where I obtained my PhD on the development of main group catalysts for the synthesis of oxygenated polymers. After completion of my PhD in 2018, I joined the group of Prof. Theodor Agapie at Caltech as a Marie Skłodowska-Curie fellow. My research focused on the development of hybrid heterogeneous Cu electrodes for the electroconversion of CO2-to-fuels. At the end of 2020, I moved back to Europe to complete my Marie Skłodowska-Curie fellowship in the group of Prof. Stefan Mecking, at the University of Konstanz, where I worked on the development of catalysts for olefin polymerization. Since August 2021, I joined the Organic Chemistry and Catalysis group as an assistant professor.

What is the best piece of advice you have ever been given?

At the start of my PhD degree, I received a birthday card from my daily supervisor, Dr. Jennifer Garden, with a quote: “Nullum magnum ingenium sine mixtura dementiae fuit”, attributed to Seneca. I console myself with that quote every time I come up with the next (unrealistic) Friday afternoon experiment to try!

Why did you choose to publish in ChemComm?

I chose to publish in ChemComm due to its high visibility and reputation within the scientific community.

  Arnaud Thevenon is an Assistant Professor at Utrecht University. He received his PhD (2018) from the University of Oxford under the supervision of Prof. Charlotte K. Williams. He was a Marie Skłodowska-Curie postdoctoral researcher at Caltech (2018-2021) in the group of Prof. Theodor Agapie and the University of Konstanz (2021) in the group of Prof. Stefan Mecking before joining Utrecht University in 2021. His research interest includes the development of homogeneous thermo/electrocatalysts for small molecules, biomass, and waste (plastic) valorization as well as the development of novel polymers that are intrinsically circular by design.

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Showkat Rashid

We are excited to share the success of Showkat Rashid’s first-time independent article in ChemComm; “Chemoselective oxidation of aromatic aldehydes to carboxylic acids: potassium tert-butoxide as an anomalous source of oxygen included in the full milestones collection. 

Read our interview with Showkat below.

What are the main areas of research in your lab and what motivated you to take this direction?

Our lab is primarily focused on the synthesis of bioactive natural products having therapeutic potential against diseases like Alzheimer’s disease and AMR. Additionally, scalable synthesis of drugs/drug-like molecules, and the development of novel methodologies for building complexities are also pursued in our lab. During my high school days, I got the opportunity to watch some chemical reactions carried out by our science teacher which was highly fascinating to me. The impact of that exposure at the school level was so deep and I used to make crude soap from cooking oil and caustic soda at home. This interest in chemical reactions remained throughout my academic journey and motivated me to be an organic chemist.

Can you set this article in a wider context?

Carboxylic acids and their derivatives like esters, amides, and anhydrides represent quintessential building blocks for pharmaceutical, agrochemical, and polymer industries. The main chemical transformation to access carboxylic acids is the oxidation of corresponding aldehydes and these oxidations have been primarily implemented using stoichiometric amounts of various metal-based oxidants. Considering their serious toxicity issues, nascent H2O2 oxidations,
organocatalytic oxidations, and NHC-based oxidations have also emerged. Despite their promise, these methods suffer several limitations in terms of high catalyst loading, longer reaction times, limited substrate scope, and operational complexities.

Most of these reported methods utilize diverse primary or secondary oxidants (as oxygen sources) and proceed through Criegee intermediate which is difficult to handle, especially at an industrial scale. Any oxidation strategy that averts such an intermediate is highly desired. In this context, we have disclosed an unprecedented potassium tert-butoxide-mediated oxidation protocol for the conversion of aromatic/heteroaromatic aldehydes to their corresponding carboxylic acids. Interestingly, this method uses KOtBu as an oxygen source, and can easily oxidize a range of aldehydes to carboxylic acids under ambient conditions. The extraordinary chemoselectivity displayed by this method to oxidize a relatively less preferred functional group in the presence of more oxidation-prone functional group/s highlights the advantage of this protocol over the methods reported so far. Operational simplicity, fast reaction kinetics, fair substrate scope, and gram-scale operations are some of the highlights of this method.

What do you hope your lab can achieve in the coming year?

In the coming year, we are committed to exploring novel strategies for assembling complex natural products and drug-like molecules. New reactions involving a high level of selectivity and economy will be our prime focus.

Describe your journey to becoming an independent researcher.

Formally my research career started with the M. Phil degree enrolled at the University of Kashmir-Srinagar and I was fortunate enough to have worked with Dr. Bilal A. Bhat at the CSIR-IIIM Srinagar. My initial training was in medicinal chemistry and, exploration of plant-derived bioactive compounds against cancer. Subsequently, I joined Dr. Bhat for my doctoral studies and worked on a collaborative research project between Dr. Bhat and Prof. Goverdhan Mehta in the area of Natural product synthesis at the University of Hyderabad. During this time, I got trained in multistep synthesis and eventually completed the total synthesis of several complex bioactive natural/non-natural compounds. After completing my doctoral studies in 2019, I did my initial postdoctoral training with Prof. Mehta at the University of Hyderabad, and later in 2020 moved to Prof. Shinichi Saito’s research group at Tokyo University of Science-Japan, wherein my research was oriented toward the design and synthesis of rotaxane based molecular machines. My journey to an independent researcher began in 2022 when I joined the Natural Product and Medicinal Chemistry Division (NPMCD) of IIIM Jammu as a senior scientist and my present research interests are centered on the synthesis of bioactive natural products of medicinal importance and development of new organic transformations.

What is the best piece of advice you have ever been given?

Both of my Ph.D. supervisors, Dr. Bhat and Prof. Mehta trained me to be more realistic in life. Their advice used to be “There is no free lunch in life” and “It is always better to have one bird in the hand than two in the bush”.

Why did you choose to publish in ChemComm?

I believe that ChemComm is one of the highly reputed chemistry journals with a wide readership across all the disciplines of chemical science. In addition to being a competitive platform for novel and application-oriented research findings, the highly systematic and robust nature in terms of publishing these ideas are some of the factors that attracted me to publish in ChemComm.

  Dr. Showkat Rashid is currently working as a senior scientist at CSIR-Indian Institute of Integrative Medicine (IIIM) Jammu-India. He pursued his Bachelor of Science, Master of Science, and M.Phil. in chemistry from the University of Kashmir, Srinagar. Subsequently, he joined Dr. Bilal A. Bhat (Principal Scientist, IIIM-Srinagar) for his Ph.D. program and worked under a collaborative research project between Dr. Bhat and Prof. Goverdhan Mehta in the area of Natural product synthesis. His doctoral research encompassed diverse areas of contemporary interest in synthetic organic and medicinal chemistry.
After completing his doctoral studies in 2019, Dr. Showkat did his initial postdoctoral training with Prof. Goverdhan Mehta at the University of Hyderabad, with a prime focus on the synthesis of complex bioactive natural products and molecules of human imagination. Later on, in 2020 he moved to Prof. Shinichi Saito’s research group at Tokyo University of Science-Japan, wherein his research was oriented towards the design and synthesis of molecular machines. These studies eventually led to the synthesis of novel fluorenone-based [2]-rotaxanes with potential applications as smart drug delivery systems. While in Japan, Dr. Showkat was awarded the prestigious start-up research grant by the Japan Society for the Promotion of Science (JSPS), Japan for the year 2022-2023.
At CSIR-IIIM Jammu, Dr. Showkat’s research interests are tuned towards the total synthesis of bioactive natural products/drugs, new methods for building complexity, and multistep synthesis of biologically privileged scaffolds having the potential to combat Alzheimer’s disease and antimicrobial resistance.

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Abhijit Sau

We are excited to share the success of Abhijit Sau’s first-time independent article in ChemComm; “Deoxyfluorinated amidation and esterification of carboxylic acid by pyridinesulfonyl fluoride included in the full milestones collection. 

Read our interview with Abhijit below.

What are the main areas of research in your lab and what motivated you to take this direction?

Primary focus of our lab lies in designing and synthesis of biologically active molecules of medicinal interest. We desire to explore catalysis and mechanisms in depth to extend the present understanding in the organic reaction. Currently, our goal is to develop efficient methodologies for stereoselective synthesis of small molecules including synthesis of different glycosides and sugar-functionalized bioactive compounds for pharmaceutical application. During my school days, I was always excited to draw new organic molecules in my notebook. The idea that fascinated me was the possibility that a molecule may not exist, but I could bring it to existence by synthesizing it. I can create libraries of molecules yet unknown to science. This excitement always drives me to pursue unique challenges in synthetic organic chemistry.

Can you set this article in a wider context?

The amide bond synthesis is one of the most used reactions in medicinal chemistry. In this article, 2-pyridine sulfonyl fluoride has been employed as a deoxy fluorinating reagent of carboxylic acids to acyl fluorides under mild conditions, followed by one-pot amidation and esterification. Moreover, it is a more atom-economic amide coupling reagent than commonly used chemicals. This finding will encourage the extension of the synthesis of organofluorine compounds, which are the essential intermediate in several chemical transformations.

What do you hope your lab can achieve in the coming year?

In the coming year, we would like to further explore deoxyfluorination method on carbohydrate chemistry. Our aim is to offer a sustainable process to access complex natural and unnatural organic molecules including glycohybrid structures for potential application.

Describe your journey to becoming an independent researcher.

I progressed as a researcher after joining at Bose Institute for doctoral studies (with Prof Anup Kumar Misra). Throughout this time, I was interested in new catalytic methods for organic reactions, including carbohydrate functionalization and different types of coupling reactions. I was fortunate enough to get further opportunities that enabled me to continuously explore this diverse area specialising in stereoselective synthesis of 2-deoxy glycosides (with Prof. M. Carmen Galan at the University of Bristol, Unite Kingdom) and modifying the chemical reactivity of organic molecule using physical tools vibrational strong coupling (with Prof. Joseph Moran, University of Strasbourg). In 2021, I started my independent research journey to further explore the deoxyfluorinated chemistry and synthesis of different type of bioactive molecules.

What is the best piece of advice you have ever been given?

My postdoc supervisor’s wise words – “Do slowly but surely”

Why did you choose to publish in ChemComm?

ChemComm is one of the most renowned and reputed chemistry journal. ChemCom has greatly supported organic synthesis, constantly pushing new horizons with exciting publications showcasing novel ideas and robust findings. The pleasant surprise was the fast-paced timescale ChemComm adhered to.

Dr Abhijit Sau earned his BSc (2007) and MSc (2009) in Chemistry from Vidyasagar University, West Bengal, India. Subsequently, he carried out his doctoral research at Bose Institute, Kolkata with Prof. Anup Kumar Misra during 2009 – 2014. Moving forward, Dr Sau secured Johan Gadolin postdoctoral fellowship from Åbo Akademi University, Finland, in 2014. In 2015, he started working as a postdoctoral researcher with Prof M. Carmen Galan at the University of Bristol, United Kingdom. Afterward, he joined the Prof. Moran group at the University of Strasbourg, France, with the prestigious Marie Curie postdoctoral fellowship. He was recognized for his academic excellence and was awarded the Ramanujan Fellowship from SERB, India, to start his independent career at CSIR-IICT Hyderabad in 2021. Since April 2022, Dr Sau has been working as an Assistant Professor in the Department of Chemistry at IIT Hyderabad.

Webpage: https://iith.ac.in/chy/asau/

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – Jonathan De Tovar

We are excited to share the success of Jonathan De Tovar’s first-time article in ChemComm; “Insights into non-covalent interactions in dicopper(ii,ii) complexes bearing a naphthyridine scaffold: anion-dictated electrochemistry” included in the full milestones collection. 

Read our interview with Jonathan below.

What are the main areas of research in your lab and what motivated you to take this direction?

Our research team, CIRe, is actively engaged in addressing challenges related to bio-inspired catalysis, bio-targeted coordination chemistry, and photo-induced processes. CIRe’s work encompasses both fundamental research and practical applications, including strategies for the conversion of CO2 and alkanes into high-value building blocks and hydrocarbon fuels, along with efficient solar energy utilization.

Additionally, while exploring diverse research domains, our trajectory is influenced by the challenges we encounter. For instance, we have delved into understanding the influence of non-covalent interactions in tuning the redox potentials of dicopper(II,II) complexes.

Can you set this article in a wider context?

This article positions itself within the broader context of non-covalent interactions in dicopper(II,II) complexes, with a specific focus on their impact on redox potentials. The significance of this work extends to the wider field of catalysis, where the exploration of non-covalent integrations holds promise for unlocking new possibilities in selective C-H functionalization. Our findings contribute to advancing the understanding of these interactions, providing valuable insights for the development of catalysts with enhanced efficiency and selectivity in challenging electrochemical reactions.

What do you hope your lab can achieve in the coming year?

In the coming year, our lab aims to further unravel the subtleties of non-covalent integrations in transition metal complexes for electrochemically catalyzed reactions. We aspire to refine our understanding of the underlying mechanisms and explore novel ligand architectures that enhance the catalytic performance of such complexes. Additionally, we aim to disseminate our findings through impactful publications and foster collaborations that will accelerate the translation of our research into practical applications.

Describe your journey to becoming an independent researcher.

My journey to becoming an independent researcher has been marked by a continuous exploration of both molecular and colloidal catalysts for small molecules activations. Starting from my doctoral studies, where I investigated Pd- and Co-based (nano)catalyst for C-C coupling reactions and artificial photosynthesis, progressively focused on the development of my expertise in designing and optimizing molecular catalysts for pivotal transformations.

Continuing as postdoctoral researcher in the design of catalysts exhibiting agostic interactions followed by their immobilization trough both covalent and non-covalent interactions, highlighted the importance of such interactions when understanding the modus operandi and fate of catalysts under turnover conditions.

This journey has been instrumental in shaping my commitment to addressing challenges in different electrocatalysis domains and establishing myself as an independent researcher in the field of non-covalent interactions.

What is the best piece of advice you have ever been given?

One of the most valuable advices I received came from my colleague Dr. Catherine Belle: “Sometimes, it’s not just about focusing solely on the immediate path but exploring lateral perspectives. Learning to see things from other points of view by changing your way of thinking may help you better understand what surrounds you.”

Why did you choose to publish in ChemComm?

Choosing to publish in ChemComm was a strategic decision aligned with the journal’s reputation for disseminating cutting-edge research. The rapid dissemination and broad readership of ChemComm provide an excellent platform for sharing our findings on non-covalent integrations in dicopper(II,II) complexes. By contributing to ChemComm, we aim to stimulate discussions within the scientific community and showcase the potential of our research to influence the broader landscape of catalytic transformations involving such non-covalent interactions.

Dr J. De Tovar completed his PhD in 2018 at the Autonomous University of Barcelona, where he explored Pd- and Co-based (nano)catalysts for C-C coupling reactions and artificial photosynthesis under the guidance of Dr. Jordi García-Antón and Dr. Xavier Sala. Notably, his research delved into photophysical and dynamical phenomena within molecular and colloidal systems, thanks to the privilege of engaging in collaborative research with esteemed scientists such as Dr. Karine Philippot (LCC-CNRS, Toulouse), Dr. Zoraida Freixa (UPV-EHU, San Sebastián), Dr. Antoni Llobet (ICIQ, Tarragone), and Dr. Nathan McClenaghan (ISM-CNRS, Bordeaux).

Following his doctoral studies, J. De Tovar continued his research by joining Dr. Laurent Djakovithc and Dr. Franck Rataboul for a 2-year postdoctoral stay at the Institute des Recherches sur la Catalyse et l’Environnement de Lyon. There, he focused on developing NHC-containing Pd complexes for the in-situ generation of highly reactive Pd species in C-C coupling reactions. Afterward, he joined Dr. Vincent Artero and Dr. Matthieu Koepf at Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA-Grenoble), dedicating 2 years to studying the mechanisms of CO2 and N2 electrochemical reduction reactions using pincer-containing transition metal complexes.

In 2023, J. De Tovar joined Dr. Aurore Thibon-Pourret and Dr. Catherine Belle at the Département de Chimie Moléculaire – Université Grenoble Alpes as a postdoctoral researcher, focusing on the development of Cu-based complexes for the activation and further selective oxidation of recalcitrant C-H bonds. His current research interests center around bio-inspired catalysis, showcasing his dedication to pushing the boundaries of knowledge in this dynamic field.

Twitter/X: @DCMGrenoble

Linkedin: Jonathan De Tovar Villanueva

Explore more ChemComm Milestones news and updates on our X Feed (@ChemCommun) and LinkedIn (ChemComm Journal)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Milestones – James Cumby

We are excited to share the success of James Cumby’s first-time independent article in ChemComm; “Mixed anion control of negative thermal expansion in a niobium oxyfluoride included in the full milestones collection. 

Read our interview with James below.

What are the main areas of research in your lab and what motivated you to take this direction?

I am interested in how, by substituting oxygen with another anion (such as fluorine) we can directly tune the properties of inorganic materials.

Beneath this simple idea lies a lot of complexity. For instance, while the number of metal oxides known is huge (~100,000) only a few (~5,000) oxyfluorides have been reported. For an experimental chemist, this gives a lot of choice of materials to discover! Even once synthesised, the arrangement of oxide and fluoride ions within the material can have a big influence, but is difficult to analyse. To address these problems, my group combines experimental synthesis with advanced crystallography, as well as using data-driven computational models to predict and understand new materials.

Can you set this article in a wider context?

Normally, materials expand as they get hotter. This can lead to problems like concrete cracking or dental fillings failing. A materials-based solution to these problems would be something that could stay the same volume as it was heated or cooled. Such materials exist, but they are very rare and difficult to design or control. In this research, we have discovered that by substituting oxygen with fluorine in a material we can directly control the thermal expansion behaviour. By tweaking the atomic composition, we can get a material that expands, stays the same, or even contracts as we heat it.

What do you hope your lab can achieve in the coming year?

Having discovered this new thermal expansion control, we hope to develop a better understanding of why it occurs and to extend the use of anion doping to related materials. Beyond this specific study, we will continue to develop machine learning models for predicting new materials, and to continue to develop tools to understand how anion structure influences physical properties.

Describe your journey to becoming an independent researcher.

I began my research career at the University of Birmingham, UK, where I made and characterised magnetic analogues of a rare mineral called Schafarzikite under the supervision of Prof. Colin Greaves. During my PhD, I also used density functional theory (DFT) calculations to understand the magnetic behaviour of these compounds. As a postdoc I joined the group of Prof J. Paul Attfield, FRS at the University of Edinburgh, UK. Here, my focus switched to understanding charge-driven phase transitions in solids such as magnetite. I continued to synthesise new materials and explore or simulate their properties, but also developed my expertise in crystallography. Adding to my expertise in neutron powder diffraction, I helped to push the limits of micro-crystal X-ray diffraction (measuring small powder grains using single crystal diffraction) and gained expertise in total scattering (pair distribution function) techniques for analysing short-range atomic structure. Throughout this time I developed my interest in using crystallographic data to aid materials discovery.

As an independent group leader I combine a variety of approaches to solve research problems, and continue to explore new areas at the intersection of solid state chemistry, materials science, condensed matter physics and crystallography.

What is the best piece of advice you have ever been given?

I’m grateful to the many people who have given me advice during my career so far, but I doubt any of it can be expressed in a single quote! In lieu of that, I think a good guiding principle was best expressed by Prof. Linus Pauling:

“The best way to have a good idea is to have lots of ideas”

Why did you choose to publish in ChemComm?

The ChemComm format is perfect for studies which highlight a new research area with the potential for further exploration. The broad readership is the ideal audience for our work which shows an interesting chemical phenomenon, even though the exact cause requires a more extensive study.

Dr James Cumby is a lecturer (assistant professor) in inorganic chemistry at the University of Edinburgh, working in the School of Chemistry and Centre for Science at Extreme Conditions. He received his PhD in chemistry from the University of Birmingham, followed by a postdoctoral fellowship at the University of Edinburgh. Following a year in a teaching-focussed role, he launched the functional materials group in 2019.

The functional materials research group aims to understand and exploit the effects of combining multiple anions in materials in order to control physical properties. Structure-property relationships are at the heart of what we do, and we try to ignore existing subject boundaries; methods we apply include experimental synthesis, detailed structural characterisation, and computational or data-driven methods.

Twitter/X: @CumbyLab

Website: www.cumby.chem.ed.ac.uk

Explore more ChemComm Milestones news and updates on our X Feed: @ChemCommun

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)