Archive for the ‘Catalysis’ Category

Nanocatalysis: A Nanoscale Horizons, Nanoscale, and ChemComm Collection

Nanocatalysis

A collection of recent articles in Nanoscale Horizons, Nanoscale and ChemComm

Nanoscale Horizons, Nanoscale and ChemComm are pleased to present a collection highlighting some of the latest nanocatalysis research published in the journals.

 

 

Check out this selection of articles from the collection, with many more available online.

Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles
Yifan Chen, Xun Zhan, Sandra L. A. Bueno, Ibrahim H. Shafei, Hannah M. Ashberry, Kaustav Chatterjee, Lin Xu, Yawen Tang and Sara E. Skrabalak
Nanoscale Horizons, 2021, DOI: 10.1039/D0NH00656D

Synthesis of silver and gold nanoparticles-enzyme-polymer conjugate hybrids as dual-activity catalysts for chemoenzymatic cascade reactions (Open Access)
Janne M. Naapuri, Noelia Losada-Garcia, Jan Deska, Jose M. Palomo
Nanoscale, 2022, DOI: 10.1039/D2NR00361A

 

We hope you enjoy reading this special collection and will consider Nanoscale Horizons, Nanoscale, and ChemComm for your future submissions!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Teachable micromotors

Micromotors, for the uninitiated aka me, are a specific type of colloidal structure that harvests energy from their environment and turns it into motion. In order for them to be truly effective for possible applications though, they must be able to communicate and coordinate with one another. If you want to make microbots, they can’t just move about all willy-nilly with no regard for each other. Recently, scientists have created a mixed system where one structure sheds silver ions that cause other micromotors to accelerate, an approach that mimics natural systems like bee colonies.

Researchers in China developed a system where photochemically powered micromotors can spontaneously “teach” catalytic micromotors to oscillate without any external influence. The teachers are Janus-type microparticles composed of either polymethylmethacrylate (PMMA) or silicon dioxide particles half coated with silver. Under irradiation with KCl and H2O2, the silver can interconvert between Ag(0) and Ag(1), causing the oscillatory motion of the entire particle. In contrast, the two non-oscillatory micromotors, either polystyrene spheres half coated with platinum (PS-PT) or gold-rhodium microrods (Au-Rh), catalytically decompose H2O2 to move autonomously in standard Brownian motion. When the two types of micromotors are mixed under UV light, the motion of the non-oscillatory materials changes from random to clearly oscillating (Figure 1). The intensity of the motion change depends on the proximity of the learner to the teacher, with learners closer to the teacher displaying more intense oscillations.

Figure 1. Change in movement of non-oscillating micromotors when exposed to oscillating “teacher” structures.

In fact, the Au-Rh rods will demonstrate more intense oscillations than the PMMA-Ag particles. The researchers propose a mechanism where the PMMA-Ag particles release silver ions as they oscillate, which then deposit onto the Au-Rh rods. The silver increases the catalytic activity of the rods and then, given the operating conditions, undergoes the same redox process that causes oscillation in the PMMA-Ag system.

Figure 2. Proposed mechanism of silver release and adsorption onto Au-Rh rods.

This hypothesized mechanism is supported by the development of oscillatory behavior by the Au-Rh rods in under reaction conditions where the PMMA-Ag particles are replaced by silver ions in solution. The silver on the rod surface isn’t merely adsorbed – it forms into small silver nanoparticles which can be seen via electron microscopy, making a new trimetallic structure. These nanoparticles change the trajectories of the rods, causing them to move in circles. While this system isn’t perfect, the student structures have imperfect memories and cannot teach one another, it provides a strategy for working with groups of micromotors to move towards coordinated motion and further applications.

To find out more, please read:

Non-oscillatory micromotors ‘‘learn’’ to oscillate on-the-fly from oscillating Ag micromotors

Chao Zhou, Qizhang Wang, Xianglong Lv and Wei Wang

Chem. Commun., 2020, Advance Article

About the blogger:

Dr. Beth Mundy is a recent PhD in chemistry from the Cossairt lab at the University of Washington in Seattle, Washington. Her research focused on developing new and better ways to synthesize nanomaterials for energy applications. She is often spotted knitting in seminars or with her nose in a good book. You can find her on Twitter at @BethMundySci.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Aluminum-Based Liquid Coordination Complexes

Before I get into the research, I just have to say that I think ionic liquids (ILs) are just cool. An ionic compound that’s a liquid? Mind blown. Not only are they interesting, but those unique properties make them attractive for industrial use. One class of ionic liquids generating research focus is halometallate ionic liquids (HILs), generated by reacting a metal halide and an organic halide salt. In particular, chloro-alluminate ILs have been some of the most promising for applications in industrial acid catalysis and are composed of anionic aluminate species. However, recent work has found mixtures of aluminum chloride and N/O/S donors produce a liquid Lewis acidic compounds, referred to as liquid coordination complexes (LCCs). These LCCs are potential replacements for HILs, as they’re typically easier and cheaper to prepare. Further studies have found ionic species by 27Al NMR, drawing parallels between LCCs and HILs. By combining AlCl3 and polar organic solvents, researchers in the US screened for novel LCC or HIL reactivity in catalysis.

This straightforward approach allowed researchers to easily tune the ratio of AlCl3 and solvent to find mixtures with desired properties. They chose the nitrogen donor 1-methylimidazole, N-Mim, and an oxygen donor N-methyl-2-pyrrolidone (O-NMP) as their solvents for testing given their wide availability and relevance to organic chemical reactivity. The selected solvent and AlCl3 were mixed at room temperature and found in all cases to form heterogenous mixtures. When heated to 100 oC mixtures with molar fractions of AlCl3 between 0.33 and 0.6 formed viscous liquids, many of which became solids at room temperature. These compounds were then crystalized for x-ray crystallographic analysis, where their structures confirmed the association of the aluminum with the nitrogen (Figure 1) or oxygen.

Figure 1. 50% probability ellipsoid plot of AlCl3(N-Mim), showing coordination between the aluminum and nitrogen

In the N-Mim system, 27Al NMR showed the formation of a single aluminum-containing species at AlCl3 molar fractions of 0.5 and below, with exchange occurring when higher concentrations of N-Mim are present. The O-NMP system proved more challenging to characterize crystallographically, potentially due to the formation of larger oligomeric complexes in the solid phase and increased disorder in the O-NMP ligand. However, 27Al NMR proved insightful and showed the presence of multiple aluminum-containing species, including several different stoichiometries of aluminum-solvent adducts.

Figure 2. Aluminum NMR spectra of aluminum/O-NMP complexes showing speciation over a range of different stoichiometries.

When the two systems were side-by-side compared for Lewis acidity and catalytic activity for the alkylization of benzene, the clear winner was the O-NMP system. The O-NMP-AlCl3 complex with an aluminum molar fraction of 0.6 was both the most Lewis acidic, determined by an acetonitrile IR probe, and the most catalytically active. It gave full conversion with a selectivity of almost 80%, while the N-Mim complex with the same mole fractions produced only a 32% conversion with no significant increase in selectivity. Complexes with less aluminum showed no signs of catalytic activity and were less Lewis acidic. The high activity of the AlCl3/O-NMP system can be explained by its possession of both a highly Lewis acidic cation [AlCl2(O-NMP)2]+ and a highly Lewis acidic anion [Al2Cl7], whose presence was identified in the NMR experiments. This work demonstrated a straightforward method to synthesize LCC-based catalysts with high activity, while providing some general guidance on the suitability of O-donor ligands for further study.

To find out more, please read:

Are ionic liquids and liquid coordination complexes really different? – Synthesis, characterization, and catalytic activity of AlCl3/base catalysts

Rajkumar Kore, Steven P. Kelley, Anand D. Sawant, Manish Kumar Mishra and Robin D. Rogers

Chem. Commun., 2020, Advance Article

About the blogger:

Dr. Beth Mundy is a recent PhD in chemistry from the Cossairt lab at the University of Washington in Seattle, Washington. Her research focused on developing new and better ways to synthesize nanomaterials for energy applications. She is often spotted knitting in seminars or with her nose in a good book. You can find her on Twitter at @BethMundySci.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tuning Zeolite Catalysis with Organic Molecules

Zeolites, a class of porous alumina-silicate materials, are industrially critical adsorbents and catalysts. Their highly robust nature and wide range of structural types (over 200!) make them suited to a range of applications. In particular, the general zeolite topology and pore size are selected to match and stabilize the intermediates of a chemical reaction. However, the tunability of zeolites is limited when compared to molecular catalysts, making them more like a solvent than, say, an enzyme. An active field of research is bridging the gap between the robust, scalable zeolites and highly controllable homogenous catalysts. Recent work identified organic residues maintained with the zeolite pores as key in the transformation of methanol to hydrocarbons. Previous fundamental studies demonstrated that a wide range of carbonyl and carbonyl derivative compounds promote the dehydration of methanol to dimethyl ether (DME).

Researchers at BP used methyl mono- and di-carboxylate esters to dehydrate methanol to DME at low temperatures. The mild reaction conditions allowed for high selectivity for DME while eliminating convoluting side reactions. They added either methyl formate or methyl n-hexanoate to a series of zeolite with pores ranging from narrow to wide. At a 5 mol% concentration relative to methanol they saw significant increases in DME production, particularly for the medium and wide pores. Systematic testing of carboxylate chain length found that increasing chain length increased turnovers occurred until methyl n-hexanoate, after which no further benefits were observed as the n-methyl hexanoate had already saturated the catalyst (Figure 1). All proved highly selective for converting methanol to DME with no observed hydrocarbon formation.

Figure 1. Production of DME on a medium-pore zeolite with methyl carboxylate esters of varying chain lengths.

The experimental results were coupled with theoretical work modeling the energetics of the adsorption of the ester onto the zeolite. The calculations showed an increase in adsorption energy with increased chain length, attributed to van der Waals interactions.

Figure 2. Transition state predicted by molecular modeling with methanol attacking the organic promoter adsorbed on the zeolite catalyst.

They also gave even higher energies to molecules with two carboxylate esters, like dimethyl adipate. In fact, the strongly binding molecules produced increased catalysis at loadings as low as 0.001% with respect to methanol. The promoters can be easily switched by changing the input, demonstrating the reversibility of binding at the active site. Additional molecular modeling was used to study possible transition states to develop a catalytic cycle. A proposed transition state involves a direct reaction between the methanol and the organic promotor, however specific evidence has yet to be seen. Additional work examining the role of the water present as a co-adsorbate and its impacts on transition states has yet to be done. Overall, the use of various organic molecules as promotors for the dehydration of methanol to DME on various zeolite catalysts was explored. This represents exciting fundamental study of industrially-relevant chemistry with significant room for future work.

To find out more, please read:

Getting zeolite catalysts to play your tune: methyl carboxylate esters as switchable promoters for methanol dehydration to DME

Benjamin J. Dennis-Smither, Zhiqiang Yang, Corneliu Buda, Xuebin Liu, Neil Sainty, Xingzhi Tan and Glenn J. Sunley

Chem. Commun., 2019, 55, 13804-13807.

About the blogger:

Beth Mundy is a PhD candidate in chemistry in the Cossairt lab at the University of Washington in Seattle, Washington. Her research focuses on developing new and better ways to synthesize nanomaterials for energy applications. She is often spotted knitting in seminars or with her nose in a good book. You can find her on Twitter at @BethMundySci.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Copper A3 Coupling using a Switchable Homogeneous/Heterogeneous Catalyst

A MOC, I learned this week, is a metal-organic cage. I was familiar with MOMs, MOFs and MOBs, but MOCs were a new one. A MOM (metal-organic material) is a coordination-driven assembly constructed from metal nodes linked by organic ligands. MOMs encompass both MOFs (metal-organic frameworks) and MOCs (metal-organic cages). A MOF is an extended network with the potential for inner porosity, and a MOC is a discrete metal-ligand cluster. And that’s just about as far down the nomenclature rabbit hole I’m willing to go. If you’re keeping up you’ll realise that I forgot one! A MOB is a crowd of graduate students competing for free coffee at the public seminar.

Dong and co-workers at Shandong Normal University designed and prepared a MOM catalyst constructed from copper(II) nodes and a tripodal ligand consisting of a phenylic wheel functionalised with diketones. In chloroform these two components arrange into discrete MOC assemblies containing two tripodal ligands and three copper ions. The copper ions in the cluster are each coordinated to two diketone moieties (in a acetylacetonate-like fashion) in a quasi-square planar arrangement.

Synthesis of the tripodal ligand functionalised with diketone coordinating moieties.

Synthesis of the tripodal ligand functionalised with diketone coordinating moieties.

An interesting property of the material is that it can switch between the MOC form, soluble in halogenated solvents, and an insoluble MOF that assembles upon addition of 1,4-dioxane. 1,4-Dioxane is both an anti-solvent and a ligand; coordination between copper and 1,4-dioxane binds the discrete MOC cages to each other, arranging them into the extended MOF structure. This behaviour can be exploited to prepare a practical catalyst that combines the benefits of both homogeneous and heterogeneous catalysis, namely that homogeneous catalysts are generally more efficient, selective and easier to study, but heterogeneous catalysis are easier to recover and recycle. What better way to solve this problem than with a catalyst that is homogeneous during the reaction conditions, but heterogeneous when it comes to product separation?

Reversible metal-organic cage MOC(top left)-MOF(top right) metal-organic framework transition mediated by the addition of 1,4-dioxane. Coordination bonds between 1,4-dioxane shown (bottom image).

Reversible MOC(top left)-MOF(top right) transition mediated by the addition of 1,4-dioxane. Coordination bonds between 1,4-dioxane shown (bottom image).

The authors used the A3 coupling reaction to demonstrate this concept in a catalytic reaction. The A3 reaction is a transition metal-catalysed, multi-component coupling reaction between aldehydes, alkynes and amines. The products are propargylamines, practical synthetic intermediates for the synthesis of nitrogen heterocycles. The A3 reaction has been extensively studied and can be effected by a wide range of transition metal catalysts. Its versatility makes it a popular choice as a model catalytic reaction to demonstrate innovative ideas in catalytic design – as the authors have done here.

Coordination-driven assemblies have a unique potential for the synthesis of differentially soluble materials, used by the authors for novel catalytic design. Whether this particular metal-ligand combination can be applied to other copper catalysed reactions remains to be seen, nevertheless the principle offers an innovative approach that augments the range of methods striving to bridge the gap between homogeneous and heterogeneous catalysis.

To find out more please read:

Cu3L2 metal-organic cages for A3-coupling reactions: reversible coordination interaction triggered homogeneous catalysis and heterogeneous recovery

Gong-Jun Chen, Chao-Qun Chen, Xue-Tian Li, Hui-Chao Ma and Yu-Bin Dong.
Chem. Commun., 2018, 54, 11550-11553
DOI: 10.1039/c8cc07208f

About the author

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Ruthenium Currency for a Hydrogen Fuel Economy

A group of researchers at the Chinese Academy of Sciences and Southwest University want us to kick the fossil fuels habit. Their research comes to us from China, a country using roughly one quarter of the world’s yearly energy consumption, and where the finite nature of fossil fuels is a very real threat to energy supply security. Leading in energy use, China also leads the world in electricity production from renewable sources and investment in clean energy projects.

Hydrogen is considered a viable alternative to fossil fuels as it is energy rich, more so than petrol or ethanol at 39 kWh/kg (petrol: 13 kWh/kg, ethanol: 8.2 kWh/kg), and upon combustion emits only water vapour. However, hydrogen is often obtained from fossil fuels, and it will only be a practical option for the world’s future energy needs if it can be produced from a renewable source.

Preparation of the Ru2P/reduced graphene oxide electrocatalyst for the hydrogen evolution reaction

Preparation of the Ru2P/reduced graphene oxide catalyst

To this end, water splitting offers a solution. In a water electrolysis cell, hydrogen is produced at the cathode via the hydrogen evolution reaction (HER, 2H+ + 2e –> H2), and molecular oxygen is produced at the anode (2H2O –> O2 + 4H+ + 4e). It is ideal in theory, but high energy efficiencies are required to make water splitting viable, and this relies on the development of catalytic electrodes to minimize overpotentials required to drive the reaction. Currently, state of the art HER electrocatalysts use platinum, which is expensive and rare. Furthermore, platinum catalysts are most efficient in an acidic electrolyte and proceed 2-3 times slower in alkaline solutions. On the other hand, the best oxygen evolution catalysts perform better in alkaline environments. Using an alkaline electrolyte has overall advantages as it is less corrosive, thus increasing the stability and lifetime of the electrolytic cell.

The authors have developed a HER catalyst, using ruthenium, with overpotentials and current densities superior to Pt/C in both alkaline and acidic conditions.

DFT calculation to probe the hydrogen adsorption energies on the active catalytic surface of the Ru2P on reduced graphene oxide catalyst.

DFT calculation to probe the hydrogen adsorption energies on the active catalytic surface of the Ru2P catalyst. a) and b) front and side views of the calculated Ru2P/reduced graphene oxide surface. c) free energy diagram for the HER with different catalysts.

The electrocatalyst is comprised of small, uniform Ru2P nanoparticles (~2-4 nm) evenly distributed on reduced graphene oxide sheets. The activity of the prepared catalyst (1.0 mg cm-2) for the HER was measured in an acidic medium (0.5 M H2SO4) and the overpotential to achieve a current density of -10 mA cm-2 was -22 mV, superior to Pt/C (-27 mV). In an alkaline environment (1.0 M KOH) catalyst performance was enhanced, with an overpotential of -13 mV (29 mV lower than Pt/C). High Faradaic efficiencies of more than 98% were measured in both acidic and alkaline solutions. Additionally, analysis was undertaken to further understand how the structure and composition of the catalyst influences its activity. Double layer capacitance measurements gave clues about the catalyst surface, while theoretical DFT calculations were used to study H-adsorption energies.

There is no way to avoid the reality that ruthenium is also a rare and costly metal, and for this reason may not hold the key to solving our energy woes. However, of real value are the insights gained from probing the structure function relationship of this highly active catalyst, which may guide the synthesis of rationally-designed catalysts using inexpensive and abundant materials.

To find out more please read:

Ultrasmall Ru2P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media

Tingting Liu, Shuo Wang, Qiuju Zhang, Liang Chen, Weihua Hu, Chang Ming Li.
Chem. Commun., 2018, 54, 3343-3346
DOI: 10.1039/c8cc01166d

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

An Organometallic Toolbox for the Study and Synthesis of Unique N-Heterocyclic Carbenes

N-heterocyclic carbenes (NHCs) are an interesting example of chemical curiosity turned commonplace. NHCs are stable singlet carbenes located within an N-heterocycle, in which the carbon centre bears an sp2 hybridised pair of electrons. As early as 1835 chemists were thinking about carbenes, with Dumas’ optimistic (if unsuccessful) attempt to synthesise the methylene carbene by dehydrating methanol. For many years the intentional study of carbenes was considered too demanding because of their instability, and so they remained in relative obscurity. A number of seminal papers changed this preconception; in particular, a report by Wanzlick in 1968 reporting the synthesis of the first NHC-metal complex using mercury and the first synthesis of a stable and isolable NHC by Arduengo in 1991.

Intensification in research and interest in NHCs over the past thirty years may have originated with these seminal reports, but it continues because of the success of NHCs in catalysis: both as strongly σ-donating metal ligands and nucleophilic organocatalysts. One of the most valuable features of NHCs is the ability to tailor their steric and electronic properties by altering the heterocyclic ring and N-bound substituents. Accordingly, the study of NHC reactivity and the development of methods to functionalise NHCs are essential for continued innovation in this field.

Drs Marina Uzelac and Eva Hevia at the University of Strathclyde, Scotland, have written a review article summarising organometallic methods to metallate N-heterocyclic carbenes. The work summarises metallation of all three components of the NHC: the carbenic carbon, the heterocyclic backbone and the N-bound substituents.

The lithiated complex (1), synthesised by treatment of the N-heterocyclic carbene NHC with nBuLi, can be transmetallated at the C4 position by a number of main group elements to give a variety of bimetallic complexes (2). These complexes can be selectively quenched to generate NHC complexes with unconventional regiochemistry (3).

The lithiated complex (1) can be transmetallated at the C4 position by a number of main group elements to give a variety of bimetallic complexes (2). These complexes can be selectively quenched to generate NHC complexes with unconventional regiochemistry (3).

To exemplify the breadth of research discussed; beginning with 2,6-diisopropylphenyl (dipp) substituted imidazole-2-ylidenes, the reactivity of the NHC can be unlocked by initial addition of an alkali metal such as lithium, sodium or potassium (see figure). Metallation at the C4 position occurs by deprotonation of the vinyl protons in the NHC backbone, while a second metal coordinates to the carbene electron pair at the C2 position. From this species (1) it is possible to transmetallate the C4 position with a less-polar metal such as zinc, aluminium, gallium, boron or iron to furnish a bi-metallic NHC (2). Interestingly, addition of an electrophilic methyl or proton source to this species exclusively quenches the C2 position, generating a suite of unconventional complexes (3) with the carbene electron pair positioned on the C4 carbon.

Lithiation of NHC complexes: a) deprotonation of the backbone of NHC-borane complex; b) co-complexation of NHC-zinc complex with alkyllithium affording lithium zincate; c) deprotonation of the abnormal carbene complex.

Reactivity of main-group NHC complexes towards lithiation.

Further studies investigate how different reagents influence the regioselectively and extent of metallation, how metallated NHCs can activate small-molecules such as carbon dioxide, conditions which can lead to the metallation of N-dipp substitutents, as well as products and speciation following treatment of NHCs with a variety of bimetallic reagents.

In addition to expanding the knowledge of NHC reactivity, the work summarised in this review provides a reference and inspiration to researchers seeking to tailor NHCs for unique applications in synthesis and catalysis.

To find out more please read:

Polar organometallic strategies for regioselective C-H metallation of N-heterocyclic carbenes

Marina Uzelac and Eva Hevia.
Chem. Commun., 2018, Advance Article
DOI: 10.1039/c8cc00049b

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hiding Carbon Dioxide in Oxazolidinones

Sometimes it feels as though the pinnacle of synthetic achievement is represented by 20 step total syntheses (with 10 contiguous stereocentres and 5 fused rings…). The level of chemical complexity that can be fashioned from simple building blocks is undoubtedly impressive, but amid such feats it is important not to lose sight of the elegance and worth of simple chemistry, especially when it aims to play a part in resolving profound challenges. One such challenge, which will increasingly confront future generations, is how to reduce the load of carbon dioxide in the atmosphere. One solution is to ‘fix’ carbon dioxide by integrating it into chemical building blocks of added complexity in a sustainable way.

The porosity and high surface area of metal organic frameworks (MOFs), a class of three-dimensional coordination networks, proffers them as ideal materials for capture and storage of carbon dioxide. A team of researchers have designed a MOF which consumes carbon dioxide in a different way: by transformation into value-added chemicals. The group have developed a catalytic MOF embedded with lewis-acidic copper centres capable of converting aziridines to oxazolidinones by the addition of carbon dioxide. Oxazolidinones are used as auxiliaries in chiral synthesis, and are structural components of some antibiotics.

The MOF, termed MMPF-10, is a metal-metalloporphyrin framework constructed from a copper-bound porphyrin ring chemically modified to incorporate 8 benzoic acid moieties, generating an octatopic ligand. These carboxylic acids groups form a second complex with copper in situ, termed a ‘paddlewheel’ for its appearance, with the formula [Cu2(CO2)4]. The resulting network contains hexagonal channels measuring 25.6 x 15.6 Å flanked by four of each of the two copper complexes. With 0.625 % of the catalyst at room temperature, 1 bar CO2 pressure, and in a solvent free environment, MMPF-10 catalyses the transformation of 1-methyl-2-phenylaziridine to yield 63% of the product.

metal-metalloporphyrin MOF catalyses catalyzes carbon dioxide fixation aziridines to oxazolidinones

Topology of MMPF-10 showing hexagonal channels in a) and c), and pentagonal cavities in b). Turquoise: copper, red: oxygen, grey: carbon, blue: nitrogen.

This work, a simple reaction to prepare oxazolidinones, shows that carbon dioxide can be fixed in specialised synthetic building blocks in a sustainable way. This is the way the first paragraph ended, ‘in a sustainable way’, because the challenge of developing such a reaction is two-fold: it must use carbon dioxide, and the reaction conditions must be sustainable. There will be no beneficial offset if the reaction uses a lot of energy, requires many resources, or generates larges quantities of waste. In this reaction the researchers have remained mindful of developing a mild, solvent-free reaction with low catalyst loading employing an earth abundant metal, reflecting an earnest aim to develop practical and sustainable chemistry.

To find out more please read:

A metal-metalloporphyrin framework based on an octatopic porphyrin ligand for chemical fixation of CO2 with aziridines

Xun Wang, Wen-Yang Gao, Zheng Niu, Lukasz Wojtas, Jason A. Perman, Yu-Sheng Chen, Zhong Li, Briana Aguila and Shengqian Ma
Chem. Commun., 2018, Advance Article
DOI: 10.1039/c7cc08844b

About the Author

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Coordinating nature and photochemistry to create hydrogen

When we look to our future energy resources, the need to realise new means of renewable energy is immediately obvious. Much research is being carried out around the world into the development of systems that can generate energy – from H2 to biofuels to solar fuels – all of which place great importance on high efficiency and sustainability.

Looking at the world around us for inspiration, the obvious candidate is the photosynthetic process, where visible light is employed to convert CO2 and H2O into chemical energy. This process involves the transport of electrons through a complex series of intricately aligned porphyrin-related and protein biomolecules. We can explore the development of a system that mimics the behaviour of natural systems, with respect to the relay of electrons along a series of molecules, or, alternatively, we can take the components in these systems and exploit their properties in combination with other electronically-active but non-natural molecules.

Upon photoexcitation of [Ru(bpy)3]2+, electron transfer through a ferredoxin scaffold to a cobaloxime catalyst facilitates the production of hydrogen.It is the latter approach which Lisa Utschig and her team from Argonne National Laboratory, near Chicago in the US, employed to generate a molecular system capable of photocatalysing the production of hydrogen. In their biohybrid system, the photosensitiser ruthenium(II) tris(bipyridine), ferredoxin (a water-soluble electron transfer protein), and cobaloxime (a cobalt(II)-based catalyst), were combined to generate a miniature reaction center that mimics those which occur in biological systems. However, the Utschig group’s system has a smaller molecular weight, which allows for characterisation of the electronic processes that occur in the system.

Lisa and her colleagues found that the presence of ferredoxin in the catalytic system acted as a scaffold to stabilise the charge-separated state necessary for electron transfer and the desired production of H2. They also observed that the catalytic behaviour of the Ru(II)–Co(II) pair was only possible in the presence of ferredoxin, which acted to extend the lifetime of the otherwise transient Co(I), allowing the desired reaction to occur.

In order to fully understand and enhance the properties of the molecular systems developed to fulfil the increasing need for energy alternatives, we need to be able to probe the structure and processes that occur in the molecule; the use of smaller analogs to those that exist in nature offers a means by which to achieve this goal. The photoactivated catalyst discussed in this work is an important step forward in the development of an optimized system for use in solar fuel production.

Read this hot ChemComm article in full:
Aqueous light driven hydrogen production by a Ru–ferredoxin–Co biohybrid
S. R. Soltau, J. Niklas, P. D. Dahlberg, O. G. Poluektov, D. M. Tiede, K. L. Lulfort and L. M. Utschig
Chem. Commun., 2015, 51, 10628–10631
DOI: 10.1039/C5CC03006D

Biography

Anthea Blackburn is a guest web writer for Chemical Science. She hails originally from New Zealand, and is a recent graduate student of Northwestern University in the US, where she studied under the tutelage of Prof. Fraser Stoddart (a Scot. There, she exploited supramolecular chemistry to develop multidimensional systems and study the emergent properties that arise in these superstructures. When time and money allow, she is ambitiously attempting to visit all 50 US states.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Improvements to a selective hydrogenation process using ionic liquids

In this ChemComm communication, Peter Claus and co-workers describe an interesting application of room temperature ionic liquids to the selective hydrogenation of 2-hexyne. Unlike many reports in the literature, where an ionic liquid acting as a solvent may enhance a particular reaction, this report outlines a solid supported catalyst system modified with an ionic liquid layer.

Such materials, known as SCILLS, (solid catalyst with an ionic liquid layer) have been investigated in a variety of hydrogenation reactions. In this work the desired reaction is the reduction of 2-hexyne to cis-2-hexene. The catalyst is 1 wt% palladium on silica, modified with various loadings of 3 common ionic liquids: BMIM hexafluorophosphate, BMIM bis(triflouoromethanesulfonyl)imide and N-butyl-N-methylpyrrolidinium dicyanamide ([BMPL][DCA]). The performance of the unmodified catalyst was compared with the yield and selectivity afforded by the SCILL systems. The best results were reported with the dicyanamide ionic liquid SCILL, ([BMPL][DCA]) at 30 wt% ionic liquid loading.

In such a process, there are several reactions that must be suppressed. As the product is an olefin, isomerisation to the trans product must be controlled, as must further hydrogenation to the fully reduced material, hexane. For a number of reasons, based on the nature and amount of chemisorbed hydrogen, and favourable dicyanamide anion interactions with palladium, the dicyanamide SCILL system is particularly effective.

Notably, this system gives improved performance in terms of selectivity and yield over the two best performing commercial catalysts for this task. For example, Lindlar´s catalyst, palladium on calcium carbonate, deactivated with lead, cannot match its performance. In this work, the authors give an example of how ionic liquids can add value to a commercial process, while also offering considerable process improvements, in terms of toxicity and arguably, simplicity. The group’s focus now turns to SCILL activity and stability in a continuous hydrogenation process.

Read this RSC Chemical Communication today!

ionic-liquid layer
Frederick Schwab, Natascha Weidler, Martin Lucas and Peter Claus
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)