Author Archive

Let single crystals do the heavy lifting

Researchers in the US have developed heat responsive crystalline cantilevers that are capable of lifting a metal ball almost 100 times heavier than the crystal itself.

Stimuli responsive behaviour in soft materials has blossomed in recent years, but for highly crystalline solids, such properties are still surprising, especially for materials that don’t lose their single crystalline nature in the process.

Source: Royal Society of Chemistry
Upon heating, the crystal lattice changes from herringbone packing to infinite 1D chains stacked co-facially along their π surfaces.

Jeremiah Gassensmith and colleagues at the University of Texas at Dallas and the University of North Texas, US, have developed single crystals of an N-substituted naphthalene diimide (NDI) derived organic semiconductor that can undergo a reversible phase change from its α to its β form under heating.

Read the full story by Jason Woolford on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for August

All of the referee-recommended articles below are free to access until 6th October 2017.

Photoactivatable aggregation-induced emission of triphenylmethanol
Yue Zheng, Xiaokun Zheng, Yu Xianga and Aijun Tong
Chem.Commun., 2017, Advance Article
DOI: 10.1039/C7CC04693F, Communication

____________________________________________________

Orthogonal switching of self-sorting processes in a stimuli-responsive library of cucurbit[8]uril complexes
Stefan Schoder and Christoph A. Schalley
Chem. Commun., 2017, 53, 9546-9549
DOI: 10.1039/C7CC05469F, Communication

____________________________________________________

Condensing the information in DNA with double-headed nucleotides 
Mick Hornum, Pawan K. Sharma, Charlotte Reslow-Jacobsen, Pawan Kumar, Michael Petersena and Poul Nielsen
Chem. Commun., 2017,53, 9717-9720
DOI: 10.1039/C7CC05047J, Communication

____________________________________________________

High magnetic relaxivity in a fluorescent CdSe/CdS/ZnS quantum dot functionalized with MRI contrast molecules 
S. G. McAdams, D. J. Lewis, P. D. McNaughter, E. A. Lewis, S. J. Haigh, P. O’Brien and F. Tuna
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC05537D, Communication
This article is part of the themed collection: Commemorating Michael Faraday (1791-1867)

____________________________________________________

What [plasma used for growing] diamond can shine like flame?
Michael N. R. Ashfold, Edward J. D. Mahoney, Sohail Mushtaq, Benjamin S. Truscotta and Yuri A. Mankelevich
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC05568D, Feature Article
This article is part of the themed collection: Commemorating Michael Faraday (1791-1867)

____________________________________________________

Reversible structural switching of a metal-organic framework by photoirradiation
Varvara I. Nikolayenko, Simon A. Herberta and Leonard J. Barbour
Chem. Commun., 2017, Advance Article
10.1039/C7CC06074B, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2nd From Carbon-Rich Molecules to Carbon-Based Materials Conference

The 2nd From Carbon-Rich Molecules to Carbon-Based Materials Conference is to be held 7th – 10th June in Nassau, Bahamas.

This interdisciplinary conference will provide unique “fusion” opportunities for chemists, physicists and engineers having various backgrounds but sharing passion and interests in carbon-only or carbon-rich molecules and carbon-based materials. It will allow a diverse group of scientists from all over the globe to discuss the current challenges, needs and prospects of this quickly-evolving multidisciplinary field.

Dates for your diary

Early Bird- 7th December 2017

Talk Submission- 14th December 2017

Last Chance – 13th April 2018

You can click here to register now and see here for further information about the conference.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Fluorescent test strip detects deadly phosgene gas

Chinese scientists have improved the sensitivity of test strips for phosgene gas by using a different fluorophore.

Phosgene gas reacts with lung proteins, disrupting the blood–air barrier and suffocating victims. Although deadly, many chemical plants require phosgene to synthesise products such as pharmaceuticals and pesticides. But accidental leaks are a risk. In 2016, for example, a leak at Gujarat Narmada Valley Fertilizers and Chemicals in India killed four workers and affected nine others.

Source: Royal Society of Chemistry
This is the first test-strip sensing system for gaseous phosgene made with AIE-based fluorophores

 

Read the full story by Sarah Piggott on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Automated synthesis yields sugar high

An automated synthetic method designed by chemists in Germany has assembled the longest synthetic oligosaccharide ever made from monosaccharides. The method could help to up the pace of carbohydrate research by improving researchers’ access to synthetic glycans.

Source: © Royal Society of Chemistry The researchers used automated glycan assembly to make a 50mer polymannoside

Read the full article by Jennifer Newton on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for July

All of the referee-recommended articles below are free to access until 10th September 2017.

Lewis acid catalyzed diastereoselective [3+4]-annulation of donor–acceptor cyclopropanes with anthranils: synthesis of tetrahydro-1-benzazepine derivatives
Zhe-Hao Wang, Huan-Huan Zhang, Dao-Ming Wang, Peng-Fei Xua and Yong-Chun Luo
Chem. Commun., 2017, 53, 8521-8524
DOI: 10.1039/C7CC04239F, Communication

____________________________________________________

A Non-Enzyme Cascade Amplification Strategy for Colorimetric Assay of Disease Biomarkers
Jiuxing Li, Zhuangqiang Gao, Haihang Ye, Shulin Wan, Meghan Pierce, Dianping Tangb and Xiaohu Xia
Chem. Commun., 2017,53, 9055-9058
DOI: 10.1039/C7CC04521B, Communication

____________________________________________________

Radiofluorination of a NHC-PF5 adduct: Toward new probes for 18F PET imaging
Boris Vabre, Kantapat Chansaenpak, Mengzhe Wang, Hui Wang, Zibo Li and François P. Gabbai
Chem. Commun., 2017,53, 8657-8659
DOI:  10.1039/C7CC04402J, Communication

____________________________________________________

New mechanistic insights into intramolecular aromatic ligand hydroxylation and benzyl alcohol oxidation initiated by the well-defined (μ-peroxo)diiron(III) complex
Mio Sekino, Hideki Furutachi, Rina Tojo, Ayumi Hishi, Hanako Kajikawa, Takatoshi Suzuki, Kaito Suzuki, Shuhei Fujinami, Shigehisa Akine, Yoko Sakata, Takehiro Ohta, Shinya Hayamic and Masatatsu Suzukid
Chem. Commun., 2017,53, 8838-8841
DOI: 10.1039/C7CC04382A, Communication

____________________________________________________

Activation of P-H Bond by a Frustrated Lewis Pair and its Application in Catalytic Z-selective Hydrophosphonylation of Terminal Ynones
Yizhen Liu, Xiaoting Fan, Zhen Hua Li and Huadong Wang
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC05028C, Communication

____________________________________________________

Lone pair-π interaction-induced generation of photochromic coordination networks with photoswitchable conductance
Jian-Zhen Liao, Jian-Fei Chang, Lingyi Meng, Hai-Long Zhang, Sa-Sa Wanga and Can-Zhong Lu
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC05150F, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Simplified structure eases antibiotic synthesis

New analogues of the potent antibiotic teixobactin could be instrumental in the fight against multi-drug resistant pathogens.

By replacing a rare amino acid in the structure of teixobactin, UK researchers have unlocked the door to cheaper and easier-to-manufacture forms of this potent antibiotic.

(Left) Teixobactin. (Right) General structure of teixobactin analogues with the hydrophilic/charged residues shown in red, hydrophobic residues shown in black and structural differences shown in blue.

Scientists in the US reported their discovery of teixobactin in 2015. It works against multi-drug resistant pathogens, but as it contains a rare and difficult to manufacture amino acid it is hard to make.

Read the full story by Tabitha Watson on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT ChemComm articles for June

All of the referee-recommended articles below are free to access until 5th August 2017.

Chemically individual armoured bioreporter bacteria used for the in vivo sensing of ultra-trace toxic metal ions
Zhijun Zhang, Enguo Ju, Wei Bing, Zhenzhen Wang, Jinsong Rena and Xiaogang Qu
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC03794E, Communication

_____________________________________________________________________________________________

Expeditious synthesis of pyrano[2,3,4-de]quinolines via Rh(III)-catalyzed cascade C–H activation/annulation/lactonization of quinolin-4-ol with alkynes
Gang Liao, Hong Song, Xue-Song Yinab and Bing-Feng Shi
Chem. Commun., 2017, Advance Article
DOI:  10.1039/C7CC04113F, Communication

_____________________________________________________________________________________________

Autonomously propelled microscavengers for precious metal recovery
Sarvesh Kumar Srivastava, Mariana Medina-Sáncheza and Oliver G. Schmidta
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC02605F, Communication

_____________________________________________________________________________________________

Aromatic stacking – a key step in nucleation
Aurora J. Cruz-Cabeza, Roger J. Davey, Sharlinda Salim Sachithananthan, Rebecca Smith, Sin Kim Tang, Thomas Vetter and Yan Xiao
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC02423A, Communication

_____________________________________________________________________________________________

Hexagonal boron nitride nanosheets as a multifunctional background-free matrix to detect small molecules and complicated samples by MALDI mass spectrometry
Jianing Wang, Jie Sun, Jiyun Wang, Huihui Liu, Jinjuan Xue and Zongxiu Nie
Chem. Commun., 2017, Advance Article
DOI: 10.1039/C7CC02957H, Communication

_____________________________________________________________________________________________

Faradaic oxygen evolution from SrTiO3 under nano- and femto-second pulsed light excitation
D. J. Aschaffenburg, X. Chen and T. Cuk
Chem. Commun., 2017,53, 7254-7257
DOI: 10.1039/C7CC03061D, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Bismuth drug structure solved

Crystal structure of bismuth subgallate viewed along (a) [010] and (b) [100]. Bismuth, carbon and oxygen atoms are coloured purple, grey and red, respectively. Hydrogen atoms and water molecules in the pores have been omitted for clarity.

Bismuth subgallate – a widely used pharmaceutical for treating stomach ulcers – is a porous coordination polymer, new research shows. The discovery, made by scientists in Sweden and the UK, settles a long running question over the drug’s structure, which had been frustrated by bismuth subgallate’s tiny crystals and their tendency to break down when exposed to high energy electron beams.

Now, Andrew Kentaro Inge from Stockholm University and his team have overcome these issues. By combining continuous rotational data collection with a cooling technique, they avoided the electron beam damage, poor resolution and diffuse scattering holding them and others back. ‘Continuous rotation electron diffraction is a promising way to elucidate the structures of hard to obtain, or very hard to crystallise, pharmaceutical forms. For this purpose, it’s an up-and-coming method,’ says Tomislav Friŝĉić, an expert in materials chemistry at McGill University in Canada.

Read the full story by Tabitha Watson on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Exploration of MXenes as Potassium-ion Battery Electrodes

Written by Tianyu Liu, University of California, Santa Cruz

Batteries are indispensable components that are powering a diverse array of electronics used almost every day. In recent years, due to the mass production of rechargeable electronics such as cell phones and electric vehicles, the need for reliable and economically viable batteries is rapidly increasing. Lithium-ion batteries represent a dominated rechargeable battery category that has been commercialized since early 1990s. However, the uneven distribution and high cost of lithium pose concerns on the sustainability of lithium-ion batteries.

Since the last decade, a number of scientists have shifted their attention to metal-ion batteries with more abundant and inexpensive metals than lithium, such as sodium and potassium. Change of ions calls for the need of seeking electrode materials with suitable structures that are able to host sodium or potassium ions. Most recently, Naguib and coworkers from Oak Ridge National Laboratory in USA and Purdue University in USA have identified a new two-dimensional material belonging to the MXene family that exhibits promising performance as an electrode for potassium-ion batteries. Their works has been published in Chem. Commun.

MXenes are a group of two-dimensional transition metal carbides and carbonitrides (Figure a) with chemical formula Mn+1XnTz; where M, X and Tz stand for an early transition metal element (e.g., Ti, V, Cr), carbon and/or nitrogen, and termination element (usually O, OH or F), respectively. Based on previous theoretical studies, MXenes are predicted to be capable of hosting potassium ions. In this work, Naguib et al. first synthesized one of the MXenes, Ti3CNOF, and experimentally investigated its energy storage performance.

The researchers first synthesized the Ti3CNOF powder by a wet etching process of its precursor. The obtained powder was then blended with other additives (including carbon black powder and polymer binders) and cast onto a piece of copper foil to prepare the electrode. The Ti3CNOF electrode delivered a high capacity (a measure for amount of energy that can be stored) of 710 mAh/g in the first discharging process and retained 75 mAh/g after 100 charge and discharge cycles (Figure b). In addition, the researchers gauged the charge storage mechanism of the synthesized Ti3CNOF using X-ray diffraction and X-ray photoelectron spectroscopy. The key conclusion is that potassium ions are able to intercalate in between layers of Ti3CNOF without triggering any phase change (Figure c). This mechanism is similar with lithium-ion intercalation into graphite.

Though the capacity performance reported here is not as outstanding as other graphene-based electrodes, this work provides the encouraging potential of MXenes serving as potassium-ion battery electrodes. Exploring other MXenes and modifying Ti3CNOF demonstrated here are expected to further enhance the charge storage performance of MXene-based potassium-ion batteries.

To find out more please read:
Electrochemical Performance of MXenes as K-ion Battery Anodes
Michael Naguib, Ryan A. Adams, Yunpu Zhao, Dmitry Zemlyanov, Arvind Varma, Jagjit Nanda, Vilas G. Pol.
DOI: 10.1039/C7CC02026K

About the author:
Tianyu Liu is a Ph.D. in chemistry from University of California-Santa Cruz. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web writer for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found at http://liutianyuresearch.weebly.com/.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)